Drug Interactions between Limbitrol DS and thyroid desiccated
This report displays the potential drug interactions for the following 2 drugs:
- Limbitrol DS (amitriptyline/chlordiazepoxide)
- thyroid desiccated
Interactions between your drugs
amitriptyline chlordiazePOXIDE
Applies to: Limbitrol DS (amitriptyline / chlordiazepoxide) and Limbitrol DS (amitriptyline / chlordiazepoxide)
MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.
MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (36)
- Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
- Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
- Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
- Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
- Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
- MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
- Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
- Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
- Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
- Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
- Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
- Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
- Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
- Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
- "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
- Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
- Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
- Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
- (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
- (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
- (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
- (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
- (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
- (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
- Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
- (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
- (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
- Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
- Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
- (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
- (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
amitriptyline thyroid desiccated
Applies to: Limbitrol DS (amitriptyline / chlordiazepoxide) and thyroid desiccated
MONITOR: Coadministration of thyroid hormone replacement therapy with tricyclic antidepressants may accelerate the onset or potentiate the action of tricyclic antidepressants, increasing the risk of cardiac arrhythmias and CNS stimulation. The proposed mechanism may be an increased receptor sensitivity to catecholamines. Some clinicians have used this interaction therapeutically. However, individual cases of paroxysmal tachycardia, hypothyroidism, and thyrotoxicosis have also been reported.
MANAGEMENT: Patients receiving concomitant thyroid hormone replacement therapy and tricyclic antidepressant therapy should be closely monitored for cardiac arrhythmias and CNS stimulation. Advise patients to contact their doctor if they experience toxicity symptoms such as: anxiety, agitation, insomnia, shortness of breath, irregular or fast heartbeat, and lightheadedness or dizziness.
References (20)
- Prange AJ, Wilson IC, Rabon AM, Lipton MA (1969) "Enhancement of imipramine antidepressant activity by thyroid hormone." Am J Psychiatry, 126, p. 457-69
- Wilson IC, Prange AJ, McClane TK, Rabon AM, Lipton MA (1970) "Thyroid-hormone enhancement of imipramine in nonretarded depressions." N Engl J Med, 282, p. 1063-7
- Wheatley D (1972) "Potentiation of amitriptyline by thyroid hormone." Arch Gen Psychiatry, 26, p. 229-33
- (2002) "Product Information. Elavil (amitriptyline)." Stuart Pharmaceuticals
- (2002) "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical
- (2001) "Product Information. Anafranil (clomipramine)." Basel Pharmaceuticals
- (2001) "Product Information. Cytomel (liothyronine)." Monarch Pharmaceuticals Inc
- Altshuler LL, Bauer M, Frye MA, et al. (2001) "Does thyroid supplementation accelerate tricyclic antidepressant response? A review and meta-analysis of the literature." Am J Psychiatry, 158, p. 1617-22
- Joffe RT (1998) "The use of thyroid supplements to augment antidepressant medication." J Clin Psychiatry, 59 Suppl 5, 26-9; discussion 30-1
- Joffe RT, Singer W, Levitt AJ, MacDonald C (1993) "A placebo-controlled comparison of lithium and triiodothyronine augmentation of tricyclic antidepressants in unipolar refractory depression." Arch Gen Psychiatry, 50, p. 387-93
- Cooke RG, Joffe RT, Levitt AJ (1992) "T3 augmentation of antidepressant treatment in T4-replaced thyroid patients." J Clin Psychiatry, 53, p. 16-8
- Cooke RG (1990) "T3 augmentation of a tricyclic antidepressant in a patient receiving T4 maintenance therapy." Am J Psychiatry, 147, p. 255
- Extein IL, Gold MS (1988) "Thyroid hormone potentiation of tricyclics." Psychosomatics, 29, p. 166-74
- Schwarcz G, Halaris A, Baxter L, Escobar J, Thompson M, Young M (1984) "Normal thyroid function in desipramine nonresponders converted to responders by the addition of L-triiodothyronine." Am J Psychiatry, 141, p. 1614-6
- Goodwin FK, Prange AJ Jr, Post RM, Muscettola G, Lipton MA (1982) "Potentiation of antidepressant effects by L-triiodothyronine in tricyclic nonresponders." Am J Psychiatry, 139, p. 34-8
- Swartz CM (1982) "Dependency of tricyclic antidepressant efficacy on thyroid hormone potentiation: case studies." J Nerv Ment Dis, 170, p. 50-2
- (2005) "Product Information. Triostat (liothyronine)." JHP Pharmaceuticals
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- Posternak M, Novak S, Stern R, et al. (2008) "A pilot effectiveness study: placebo-controlled trial of adjunctive L-triiodothyronine (T3) used to accelerate and potentiate the antidepressant response." Int J Neuropsychopharmacol, 11, p. 15-25
Drug and food interactions
chlordiazePOXIDE food
Applies to: Limbitrol DS (amitriptyline / chlordiazepoxide)
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.
MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (4)
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
thyroid desiccated food
Applies to: thyroid desiccated
ADJUST DOSING INTERVAL: Consumption of certain foods as well as the timing of meals relative to dosing may affect the oral absorption of T4 thyroid hormone (i.e., levothyroxine). T4 oral absorption is increased by fasting and decreased by foods such as soybean flour (e.g., infant formula), cotton seed meal, walnuts, dietary fiber, calcium, and calcium fortified juices. Grapefruit or grapefruit products may delay the absorption of T4 thyroid hormone and reduce its bioavailability. The mechanism of this interaction is not fully understood.
MANAGEMENT: Some manufacturers recommend administering oral T4 as a single daily dose, on an empty stomach, one-half to one hour before breakfast. In general, oral preparations containing T4 thyroid hormone should be administered on a consistent schedule with regard to time of day and relation to meals to avoid large fluctuations in serum levels. Foods that may affect T4 absorption should be avoided within several hours of dosing if possible. Consult local guidelines for the administration of T4 in patients receiving enteral feeding.
References (3)
- (2002) "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical
- (2022) "Product Information. Armour Thyroid (thyroid desiccated)." Forest Pharmaceuticals
- Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67
amitriptyline food
Applies to: Limbitrol DS (amitriptyline / chlordiazepoxide)
GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.
MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.
References (7)
- Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
- Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
- Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
- Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
- Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
thyroid desiccated food
Applies to: thyroid desiccated
ADJUST DOSING INTERVAL: Concurrent administration of calcium-containing products may decrease the oral bioavailability of levothyroxine by one-third in some patients. Pharmacologic effects of levothyroxine may be reduced. The exact mechanism of interaction is unknown but may involve nonspecific adsorption of levothyroxine to calcium at acidic pH levels, resulting in an insoluble complex that is poorly absorbed from the gastrointestinal tract. In one study, 20 patients with hypothyroidism who were taking a stable long-term regimen of levothyroxine demonstrated modest but significant decreases in mean free and total thyroxine (T4) levels as well as a corresponding increase in mean thyrotropin (thyroid-stimulating hormone, or TSH) level following the addition of calcium carbonate (1200 mg/day of elemental calcium) for 3 months. Four patients had serum TSH levels that were higher than the normal range. Both T4 and TSH levels returned to near-baseline 2 months after discontinuation of calcium, which further supported the likelihood of an interaction. In addition, there have been case reports suggesting decreased efficacy of levothyroxine during calcium coadministration. It is not known whether this interaction occurs with other thyroid hormone preparations.
MANAGEMENT: Some experts recommend separating the times of administration of levothyroxine and calcium-containing preparations by at least 4 hours. Monitoring of serum TSH levels is recommended. Patients with gastrointestinal or malabsorption disorders may be at a greater risk of developing clinical or subclinical hypothyroidism due to this interaction.
References (4)
- Schneyer CR (1998) "Calcium carbonate and reduction of levothyroxine efficacy." JAMA, 279, p. 750
- Singh N, Singh PN, Hershman JM (2000) "Effect of calcium carbonate on the absorption of levothyroxine." JAMA, 283, p. 2822-5
- Csako G, McGriff NJ, Rotman-Pikielny P, Sarlis NJ, Pucino F (2001) "Exaggerated levothyroxine malabsorption due to calcium carbonate supplementation in gastrointestinal disorders." Ann Pharmacother, 35, p. 1578-83
- Neafsey PJ (2004) "Levothyroxine and calcium interaction: timing is everything." Home Healthc Nurse, 22, p. 338-9
amitriptyline food
Applies to: Limbitrol DS (amitriptyline / chlordiazepoxide)
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.