Skip to main content

Drug Interactions between lidocaine / sodium bicarbonate and UriSym

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

methenamine sodium bicarbonate

Applies to: UriSym (hyoscyamine / methenamine / methylene blue / phenyl salicylate) and lidocaine / sodium bicarbonate

GENERALLY AVOID: Agents that can alkalinize the urine such as thiazide diuretics, carbonic anhydrase inhibitors, and antacids may decrease the antibacterial effectiveness of methenamine by inhibiting its conversion to formaldehyde. Methenamine is most effectively converted in an acidic milieu of pH less than 5.5.

MANAGEMENT: Concomitant use of methenamine-containing preparations with thiazide diuretics, carbonic anhydrase inhibitors, or large doses of antacids should be avoided if possible. Otherwise, frequent urine pH testing may be considered. Some methenamine products may be used with antacids if dosing times are separated by at least one hour. Consult the manufacturer's product labeling for specific recommendations.

References

  1. Musher D, Griffith D (1974) "Generation of formaldehyde from methenamine: effect of pH and concentration, and antibacterial effect." Antimicrob Agents Chemother, 6, p. 708-11
  2. Kevorkian C, Merritt J, Ilstrup D (1984) "Methenamine mandelate with acidification: an effective urinary antiseptic in patients with neurogenic bladder." Mayo Clin Proc, 59, p. 523
  3. (2002) "Product Information. Hiprex (methenamine)." Hoechst Marion Roussel
  4. Sand TE, Jacobsen S (1981) "Effect of urine pH and flow on renal clearance of methotrexate." Eur J Clin Pharmacol, 19, p. 453-6
  5. (2016) "Product Information. Hyophen (benzoic acid/hyoscy/methen/mblue/phenylsal)." BioComp Pharma
View all 5 references

Switch to consumer interaction data

Moderate

sodium bicarbonate phenyl salicylate

Applies to: lidocaine / sodium bicarbonate and UriSym (hyoscyamine / methenamine / methylene blue / phenyl salicylate)

MONITOR: Agents that cause urinary alkalinization can reduce serum salicylate concentrations in patients receiving anti-inflammatory dosages of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to increased urinary pH, resulting in increased renal salicylate clearance especially above urine pH of 7. This interaction is sometimes exploited in the treatment of salicylate toxicity.

MANAGEMENT: Patients treated chronically with urinary alkalinizers and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. Berg KJ (1977) "Acute acetylsalicylic acid poisoning: treatment with forced alkaline diuresis and diuretics." Eur J Clin Pharmacol, 12, p. 111-6
  2. Prescott LF, Balali-Mood M, Critchley JA, Johnstone AF, Proudfoot AT (1982) "Diuresis or urinary alkalinisation for salicylate poisoning?" Br Med J (Clin Res Ed), 285, p. 1383-6
  3. Balali-Mood M, Prescott LF (1980) "Failure of alkaline diuresis to enhance diflunisal elimination." Br J Clin Pharmacol, 10, p. 163-5
  4. Berg KJ (1977) "Acute effects of acetylsalicylic acid in patients with chronic renal insufficiency." Eur J Clin Pharmacol, 11, p. 111-6
  5. Brouwers JRBJ, Desmet PAGM (1994) "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet, 27, p. 462-85
View all 5 references

Switch to consumer interaction data

Drug and food interactions

Moderate

lidocaine food

Applies to: lidocaine / sodium bicarbonate

MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.

MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.

MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.

References

  1. Huet PM, LeLorier J (1980) "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther, 28, p. 208-15
  2. (2024) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc.
  3. (2015) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation
  4. (2022) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd
  5. (2022) "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd
  6. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/
  7. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/
View all 7 references

Switch to consumer interaction data

Moderate

hyoscyamine food

Applies to: UriSym (hyoscyamine / methenamine / methylene blue / phenyl salicylate)

GENERALLY AVOID: Use of anticholinergic agents with alcohol may result in sufficient impairment of attention so as to render driving and operating machinery more hazardous. In addition, the potential for abuse may be increased with the combination. The mechanism of interaction is not established but may involve additive depressant effects on the central nervous system. No effect of oral propantheline or atropine on blood alcohol levels was observed in healthy volunteers when administered before ingestion of a standard ethanol load. However, one study found impairment of attention in subjects given atropine 0.5 mg or glycopyrrolate 1 mg in combination with alcohol.

MANAGEMENT: Alcohol should generally be avoided during therapy with anticholinergic agents. Patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them.

References

  1. Linnoila M (1973) "Drug effects on psychomotor skills related to driving: interaction of atropine, glycopyrrhonium and alcohol." Eur J Clin Pharmacol, 6, p. 107-12

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.