Skip to main content

Drug Interactions between lidocaine / potassium chloride and ramipril

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

potassium chloride ramipril

Applies to: lidocaine / potassium chloride and ramipril

MONITOR CLOSELY: Concomitant use of angiotensin converting enzyme (ACE) inhibitors and potassium salts may increase the risk of hyperkalemia. Inhibition of ACE results in decreased aldosterone secretion, which in turn causes potassium retention. In one report, a significant increase in serum potassium level (3.88 +/- 0.41 to 4.84 +/- 0.45 mEq/L) was observed within one or two days following the addition of captopril in five patients who were treated with regimens that included potassium supplements or potassium-sparing diuretics. Three patients had laboratory-diagnosed hyperkalemia, including one patient receiving potassium supplementation who had a 66% increase in serum potassium. Levels remained elevated until potassium supplementation or captopril therapy was reduced or discontinued. In a postmarketing survey of patients who were prescribed enalapril in England between April and December 1985, researchers identified ten cases where enalapril appeared to have contributed to a deterioration in renal function and subsequent death. All ten patients had hyperkalemia, and seven were also receiving moderate to high dosages of potassium-sparing diuretics and/or potassium supplements. Hyperkalemia was felt to be the immediate cause of death in two of them. Risk factors for developing severe or life-threatening hyperkalemia may include renal impairment, diabetes, old age, severe or worsening heart failure, dehydration, and concomitant use of other agents that block the renin-angiotensin-aldosterone system or otherwise increase serum potassium levels.

MANAGEMENT: Caution is advised if ACE inhibitors must be used concurrently with potassium salts, particularly in patients with renal impairment, diabetes, old age, severe or worsening heart failure, dehydration, or concomitant therapy with other agents that increase serum potassium such as nonsteroidal anti-inflammatory drugs, beta-blockers, cyclosporine, heparin, tacrolimus, trimethoprim, and licorice. The combination should generally be avoided in these patients unless absolutely necessary and the benefits outweigh the potential risks. Serum potassium and renal function should be checked prior to initiating therapy and regularly thereafter. Patients should be given counseling on the appropriate levels of potassium and fluid intake, and advised to seek medical attention if they experience signs and symptoms of hyperkalemia such as nausea, vomiting, weakness, listlessness, tingling of the extremities, paralysis, confusion, weak pulse, and a slow or irregular heartbeat.

References (24)
  1. Speirs CJ, Dollery CT, Inman WH, et al. (1988) "Postmarketing surveillance of enalapril II: investigation of the potential role of enalapril in deaths with renal failure." Br Med J, 297, p. 830-2
  2. Packer M, Lee WH (1986) "Provocation of hyper- and hypokalemic sudden death during treatment with and withdrawal of converting-enzyme inhibition in severe chronic congestive heart failure." Am J Cardiol, 57, p. 347-8
  3. Burnakis TG, Mioduch HJ (1984) "Combined therapy with captopril and potassium supplementation: a potential for hyperkalemia." Arch Intern Med, 144, p. 2371-2
  4. Warren SE, O'Connor DT (1980) "Hyperkalemia resulting from captopril administration." JAMA, 244, p. 2551-2
  5. Chan TY, Critchley JA (1992) "Life-threatening hyperkalaemia in an elderly patient receiving captopril, furosemide (frusemide) and potassium supplements." Drug Saf, 7, p. 159-61
  6. Walmsley RN, White GH, Cain M, McCarthy PJ, Booth J (1984) "Hyperkalemia in the elderly." Clin Chem, 30, p. 1409-12
  7. Stoltz ML, Andrews CE Jr (1990) "Severe hyperkalemia during very-low-calorie diets and angiotensin converting enzyme use ." JAMA, 264, p. 2737-8
  8. Ponce SP, Jennings AE, Madias NE, Harrington JT (1985) "Drug-induced hyperkalemia." Medicine (Baltimore), 64, p. 357-70
  9. Lawson DH, O'Connor PC, Jick H (1982) "Drug attributed alterations in potassium handling in congestive cardiac failure." Eur J Clin Pharmacol, 23, p. 21-5
  10. Lawson DH (1974) "Adverse reactions to potassium chloride." Q J Med, 43, p. 433-40
  11. (2001) "Product Information. K-Dur (potassium chloride)." Schering Corporation
  12. Good CB, McDermott L (1995) "Diet and serum potassium in patients on ACE inhibitors." JAMA, 274, p. 538
  13. Graves JW (1998) "Hyperkalemia due to a potassium-based water softener." N Engl J Med, 339, p. 1790-1
  14. Obialo CI, Ofili EO, Mirza T (2002) "Hyperkalemia in congestive heart failure patients aged 63 to 85 years with subclinical renal disease." Am J Cardiol, 90, p. 663-5
  15. Atlas SA, Case DB, Sealey JE, Laragh JH, McKinstry DN (1979) "Interruption of the renin-angiotensin system in hypertensive patients by captopril induces sustained reduction in aldosterone secretion, potassium retention and natriuresis." Hypertension, 1, p. 279-80
  16. Schuna AA, Schmidt GR, Pitterle ME (1986) "Serum potassium concentrations after initiation of captopril therapy." Clin Pharm, 5, p. 920-3
  17. Jarman PR, Mather HM (2003) "Diabetes may be independent risk factor for hyperkalaemia." BMJ, 327, p. 812
  18. Ray K, Dorman S, Watson R (1999) "Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction." J Hum Hypertens, 13, p. 717-20
  19. Reardon LC, Macpherson DS (1998) "Hyperkalemia in outpatients using angiotensin-converting enzyme inhibitors. How much should we worry?" Arch Intern Med, 158, p. 26-32
  20. Perazella MA (2000) "Drug-induced hyperkalemia: old culprits and new offenders." Am J Med, 109, p. 307-14
  21. Jarman PR, Kehely AM, Mather HM (1995) "Hyperkalaemia in diabetes: prevalence and associations." Postgrad Med J, 71, p. 551-2
  22. Perazella MA, Mahnensmith RL (1997) "Hyperkalemia in the elderly: drugs exacerbate impaired potassium homeostasis." J Gen Intern Med, 12, p. 646-56
  23. Schoolwerth AC, Sica DA, Ballermann BJ, Wilcox CS, Council on the Kidney in Cardiovascular Disease and the Council for High Blood Pressure Research of the American Heart Association (2001) "Renal considerations in angiotensin converting enzyme inhibitor therapy: a statement for healthcare professionals from the Council on the Kidney in Cardiovascular Disease and the Council for High Blood Pressure Research of the American Heart Association." Circulation, 104, p. 1985-91
  24. Large DM, Carr PH, Laing I, Davies M (1984) "Hyperkalaemia in diabetes mellitus--potential hazards of coexisting hyporeninaemic hypoaldosteronism." Postgrad Med J, 60, p. 370-3

Drug and food interactions

Moderate

lidocaine food

Applies to: lidocaine / potassium chloride

MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.

MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.

MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.

References (7)
  1. Huet PM, LeLorier J (1980) "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther, 28, p. 208-15
  2. (2024) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc.
  3. (2015) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation
  4. (2022) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd
  5. (2022) "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd
  6. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/
  7. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/
Moderate

ramipril food

Applies to: ramipril

GENERALLY AVOID: Moderate-to-high dietary intake of potassium can cause hyperkalemia in some patients who are using angiotensin converting enzyme (ACE) inhibitors. In some cases, affected patients were using a potassium-rich salt substitute. ACE inhibitors can promote hyperkalemia through inhibition of the renin-aldosterone-angiotensin (RAA) system.

MANAGEMENT: It is recommended that patients who are taking ACE inhibitors be advised to avoid moderately high or high potassium dietary intake. Particular attention should be paid to the potassium content of salt substitutes.

References (3)
  1. (2002) "Product Information. Vasotec (enalapril)." Merck & Co., Inc
  2. Good CB, McDermott L (1995) "Diet and serum potassium in patients on ACE inhibitors." JAMA, 274, p. 538
  3. Ray K, Dorman S, Watson R (1999) "Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction." J Hum Hypertens, 13, p. 717-20
Moderate

ramipril food

Applies to: ramipril

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients should also avoid driving or operating hazardous machinery until they know how the medications affect them.

References (10)
  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
  9. (2023) "Product Information. Buprenorphine (buprenorphine)." G.L. Pharma UK Ltd
  10. (2023) "Product Information. Temgesic (buprenorphine)." Reckitt Benckiser Pty Ltd
Moderate

lidocaine food

Applies to: lidocaine / potassium chloride

MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.

MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.

References (4)
  1. (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
  2. jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
  3. Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
  4. Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.