Skip to main content

Drug Interactions between licorice and Timolide

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

timolol hydroCHLOROthiazide

Applies to: Timolide (hydrochlorothiazide / timolol) and Timolide (hydrochlorothiazide / timolol)

MONITOR: Although they are often combined in clinical practice, diuretics and beta-blockers may increase the risk of hyperglycemia and hypertriglyceridemia in some patients, especially in patients with diabetes or latent diabetes. In addition, the risk of QT interval prolongation and arrhythmias (e.g. torsades de pointes) due to sotalol may be increased by potassium-depleting diuretics.

MANAGEMENT: Monitoring of serum potassium levels, blood pressure, and blood glucose is recommended during coadministration. Patients should be advised to seek medical assistance if they experience dizziness, weakness, fainting, fast or irregular heartbeats, or loss of blood glucose control.

References

  1. Dornhorst A, Powell SH, Pensky J (1985) "Aggravation by propranolol of hyperglycaemic effect of hydrochlorothiazide in type II diabetics without alteration of insulin secretion." Lancet, 1, p. 123-6
  2. Roux A, Le Liboux A, Delhotal B, Gaillot J, Flouvat B (1983) "Pharmacokinetics in man of acebutolol and hydrochlorothiazide as single agents and in combination." Eur J Clin Pharmacol, 24, p. 801-6
  3. Dean S, Kendall MJ, Potter S, Thompson MH, Jackson DA (1985) "Nadolol in combination with indapamide and xipamide in resistant hypertensives." Eur J Clin Pharmacol, 28, p. 29-33
  4. (2002) "Product Information. Lozol (indapamide)." Rhone Poulenc Rorer
  5. Marcy TR, Ripley TL (2006) "Aldosterone antagonists in the treatment of heart failure." Am J Health Syst Pharm, 63, p. 49-58
View all 5 references

Switch to consumer interaction data

Moderate

timolol licorice

Applies to: Timolide (hydrochlorothiazide / timolol) and licorice

GENERALLY AVOID: Licorice use has been associated with hypertension and may antagonize the effects of antihypertensive agents. Glycyrrhizic acid, a component of licorice, is hydrolyzed in the intestine to a metabolite (glycyrrhetinic acid) that causes mineralocorticoid and renin-suppressing effects. In one study, licorice was found to increase blood pressure in a dose-dependent manner. Healthy volunteers who consumed licorice 50 to 200 g/day (corresponding to 75 to 540 mg/day of glycyrrhetinic acid) for two to four weeks had a 3.1 to 14.4 mmHg increase in their systolic blood pressure. Even the lowest dosage demonstrated a significant effect. In another study, plasma potassium levels decreased by 0.3 to 1.5 mEq/L in 12 out of 14 healthy volunteers who ingested licorice 100 or 200 g/day (equivalent to 700 to 1400 mg/day of glycyrrhizic acid) for one to four weeks, including four who had to be withdrawn from the study because of hypokalemia. Two more subjects were withdrawn due to edema of the face, hands, and ankles. Other side effects reported include mild, transient generalized edema; headache; sodium retention; and weight gain (1 to 4 kg, mean 1.5 kg). Signs of renin-angiotensin-aldosterone suppression were observed in all subjects, especially plasma renin activity and urinary aldosterone concentrations, which fell to subnormal or undetectable levels in the majority of subjects. There have been various published case reports of refractory hypertension, severe hypokalemia (life-threatening hypokalemic paralysis, myopathy, arrhythmia, or cardiac arrest), and hypertensive encephalopathy in association with licorice intoxication. Hypertension and hypokalemia have also been reported with moderate doses of licorice in the form of licorice-flavored chewing gum or candy, chewing tobacco, or licorice-based foods and beverages consumed on a chronic basis. Prolonged use of licorice has led to a hypermineralocorticoid (pseudohyperaldosteronism) syndrome characterized by hypertension, hypernatremia, hypokalemia, metabolic alkalosis, renin-angiotensin-aldosterone suppression, and edema. In studies and case reports, licorice toxicity has generally been completely reversible within one to several weeks of licorice discontinuation. However, renin-angiotensin-aldosterone axis may be suppressed for up to several months.

MANAGEMENT: Patients receiving antihypertensive therapy should avoid or limit the consumption of licorice-containing products. Even relatively moderate doses of licorice may be problematic in susceptible patients when ingested regularly for prolonged periods.

References

  1. Ishikawa S, Kato M, Tokuda T, Momoi H, Sekijima Y, Higuchi M, Yanagisawa N (1999) "Licorice-induced hypokalemic myopathy and hypokalemic renal tubular damage in anorexia nervosa." Int J Eating Disorder, 26, p. 111-4
  2. Cumming AM, Boddy K, Brown JJ, et al. (1980) "Severe hypokalaemia with paralysis induced by small doses of liquorice." Postgrad Med J, 56, p. 526-9
  3. Cumming A (1976) "Severe reduction of serum potassium induced by licorice." Nurs Times, 72, p. 367-70
  4. Lin SH, Yang SS, Chau T, Halperin ML (2003) "An unusual cause of hypokalemic paralysis: chronic licorice ingestion." Am J Med Sci, 325, p. 153-6
  5. de Klerk GJ, Nieuwenhuis MG, Beutler JJ (1997) "Lesson of the week: hypokalaemia and hypertension associated with use of liquorice flavoured chewing gum." BMJ, 314, p. 731
  6. Edwards CR (1991) "Lessons from licorice." N Engl J Med, 325, p. 1242-3
  7. Stewart PM, Wallace AM, Valentino R, Burt D, Shackleton CH, Edwards CR (1987) "Mineralocorticoid activity of liquorice: 11-beta-hydroxysteroid dehydrogenase deficiency comes of age." Lancet, 2, p. 821-4
  8. Nielsen I, Pedersen RS (1984) "Life-threatening hypokalaemia caused by liquorice ingestion." Lancet, 1, p. 1305
  9. Rosseel M, Schoors D (1993) "Chewing gum and hypokalaemia." Lancet, 341, p. 175
  10. Clyburn EB, DiPette DJ (1995) "Hypertension induced by drugs and other substances." Semin Nephrol, 15, p. 72-86
  11. Farese RV, Biglieri EG, Shackleton CH, Irony I, Gomez-Fontes R (1991) "Licorice-induced hypermineralocorticoidism." N Engl J Med, 325, p. 1223-7
  12. Elinav E, Chajek-Shaul T (2003) "Licorice consumption causing severe hypokalemic paralysis." Mayo Clin Proc, 78, p. 767-8
  13. Richard CL, Jurgens TM (2005) "Effects of natural health products on blood pressure." Ann Pharmacother, 39, p. 712-20
  14. Sigurjonsdottir HA, Franzson L, Manhem K, Ragnarsson J, Sigurdsson G, Wallerstedt S (2001) "Liquorice-induced rise in blood pressure: a linear dose-response relationship." J Hum Hypertens, 15, p. 549-52
  15. Dellow EL, Unwin RJ, Honour JW (1999) "Pontefract cakes can be bad for you: refractory hypertension and liquorice excess." Nephrol Dial Transplant, 14, p. 218-20
  16. Epstein MT, Espiner EA, Donald RA, Hughes H (1977) "Effect of eating liquorice on the renin-angiotensin aldosterone axis in normal subjects." Br Med J, 1, p. 488-90
  17. Epstein MT, Espiner EA, Donald RA, Hughes H (1977) "Liquorice toxicity and the renin-angiotensin-aldosterone axis in man." Br Med J, 1, p. 209-10
  18. Cumming AM (1977) "Metabolic effects of licorice." Br Med J, 1, p. 906
  19. Bannister B, Ginsburg R, Shneerson J (1977) "Cardiac arrest due to liquorice-induced hypokalaemia." Br Med J, 2, p. 738-9
  20. Holmes AM, Young J, Marrott PK, Prentice E (1970) "Pseudohyperaldosteronism induced by habitual ingestion of liquorice." Postgrad Med J, 46, p. 625-9
View all 20 references

Switch to consumer interaction data

Moderate

hydroCHLOROthiazide licorice

Applies to: Timolide (hydrochlorothiazide / timolol) and licorice

GENERALLY AVOID: Chronic use of licorice may potentiate the hypokalemic effects of some diuretics and other drugs that deplete potassium (e.g., amphotericin B, cation exchange resins). Glycyrrhizic acid, a component of licorice, possesses mineralocorticoid activity and can induce hypokalemia. Severe hypokalemia can lead to muscle paralysis, rhabdomyolysis, metabolic alkalosis, cardiac arrhythmias, and respiratory arrest.

MANAGEMENT: Patients should consult a healthcare provider before taking any herbal or alternative medicine. In general, chronic use of licorice and licorice-containing products should be avoided in patients treated with potassium-depleting drugs. During concomitant use, patients should be advised to contact their physician if they experience signs and symptoms of hypokalemia such as fatigue, myalgia, muscle weakness, abdominal pain, hypoventilation, and irregular heartbeat.

References

  1. Cumming AM, Boddy K, Brown JJ, et al. (1980) "Severe hypokalaemia with paralysis induced by small doses of liquorice." Postgrad Med J, 56, p. 526-9
  2. Cumming A (1976) "Severe reduction of serum potassium induced by licorice." Nurs Times, 72, p. 367-70
  3. de Klerk GJ, Nieuwenhuis MG, Beutler JJ (1997) "Lesson of the week: hypokalaemia and hypertension associated with use of liquorice flavoured chewing gum." BMJ, 314, p. 731
  4. Edwards CR (1991) "Lessons from licorice." N Engl J Med, 325, p. 1242-3
  5. Stewart PM, Wallace AM, Valentino R, Burt D, Shackleton CH, Edwards CR (1987) "Mineralocorticoid activity of liquorice: 11-beta-hydroxysteroid dehydrogenase deficiency comes of age." Lancet, 2, p. 821-4
  6. Nielsen I, Pedersen RS (1984) "Life-threatening hypokalaemia caused by liquorice ingestion." Lancet, 1, p. 1305
  7. Rosseel M, Schoors D (1993) "Chewing gum and hypokalaemia." Lancet, 341, p. 175
  8. Clyburn EB, DiPette DJ (1995) "Hypertension induced by drugs and other substances." Semin Nephrol, 15, p. 72-86
  9. Farese RV, Biglieri EG, Shackleton CH, Irony I, Gomez-Fontes R (1991) "Licorice-induced hypermineralocorticoidism." N Engl J Med, 325, p. 1223-7
  10. Elinav E, Chajek-Shaul T (2003) "Licorice consumption causing severe hypokalemic paralysis." Mayo Clin Proc, 78, p. 767-8
View all 10 references

Switch to consumer interaction data

Drug and food interactions

Moderate

timolol food

Applies to: Timolide (hydrochlorothiazide / timolol)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

hydroCHLOROthiazide food

Applies to: Timolide (hydrochlorothiazide / timolol)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

timolol food

Applies to: Timolide (hydrochlorothiazide / timolol)

ADJUST DOSING INTERVAL: Concurrent administration with calcium salts may decrease the oral bioavailability of atenolol and possibly other beta-blockers. The exact mechanism of interaction is unknown. In six healthy subjects, calcium 500 mg (as lactate, carbonate, and gluconate) reduced the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of atenolol (100 mg) by 51% and 32%, respectively. The elimination half-life increased by 44%. Twelve hours after the combination, beta-blocking activity (as indicated by inhibition of exercise tachycardia) was reduced compared to that with atenolol alone. However, during a 4-week treatment in six hypertensive patients, there was no difference in blood pressure values between treatments. The investigators suggest that prolongation of the elimination half-life induced by calcium coadministration may have led to atenolol cumulation during long-term dosing, which compensated for the reduced bioavailability.

MANAGEMENT: It may help to separate the administration times of beta-blockers and calcium products by at least 2 hours. Patients should be monitored for potentially diminished beta-blocking effects following the addition of calcium therapy.

References

  1. Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E (1981) "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther, 30, p. 429-35

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.