Skip to main content

Drug Interactions between itraconazole and selumetinib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

itraconazole selumetinib

Applies to: itraconazole and selumetinib

GENERALLY AVOID: Coadministration with potent or moderate inhibitors of CYP450 3A4 may increase the plasma concentrations of selumetinib, which is primarily metabolized by CYP450 3A4 and to a lesser extent by CYP450 2C19, 1A2, 2C9, 2E1, and 3A5. Selumetinib also undergoes glucuronidation by UGT1A1 and UGT1A3. When coadministered with itraconazole, a potent CYP450 3A4 inhibitor, selumetinib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 19% and 49%, respectively. When coadministered with fluconazole, a potent CYP450 2C19 and moderate CYP450 3A4 inhibitor, selumetinib Cmax and AUC increased by 26% and 53%, respectively. Concomitant use of erythromycin, a moderate CYP450 3A4 inhibitor, is predicted to increase selumetinib Cmax and AUC by 23% and 41%, respectively. Although not studied, inhibition of CYP450 3A4 may also increase the plasma concentrations of N-desmethyl selumetinib, an active metabolite that is generated primarily by CYP450 2C19 and 1A2 and metabolized via the same routes as selumetinib. N-desmethyl selumetinib represents less than 10% of selumetinib levels in human plasma, but is approximately 3 to 5 times more potent than the parent compound and contributes about 21% to 35% of the overall pharmacologic activity. Increased exposures to selumetinib and N-desmethyl selumetinib may increase the risk and/or severity of serious adverse effects such as cardiomyopathy (decrease in left ventricular ejection fraction by 10% or more below baseline), ocular toxicity (blurred vision, photophobia, cataracts, ocular hypertension, retinal pigment epithelial detachment, retinal vein occlusion), gastrointestinal toxicity (diarrhea, colitis), skin toxicity (dermatitis acneiform, maculopapular rash, eczema), and musculoskeletal toxicity (creatine phosphokinase elevations, myalgia, rhabdomyolysis).

MANAGEMENT: Concomitant use of selumetinib with potent or moderate CYP450 3A4 inhibitors should generally be avoided. If coadministration is required, a reduction in the dosage of selumetinib is recommended. Patients receiving selumetinib 25 mg/m2 twice daily should have the dosage reduced to 20 mg/m2 twice daily, and those receiving 20 mg/m2 twice daily should have the dosage reduced to 15 mg/m2 twice daily. Further dosage adjustments should be made according to clinical response and tolerance. Please refer to the product labeling for more detailed information on dosing adjustments. After discontinuation of the strong or moderate CYP450 3A4 inhibitor for 3 elimination half-lives, the selumetinib dosage that was taken prior to initiating the inhibitor may be resumed.

References (1)
  1. (2020) "Product Information. Koselugo (selumetinib)." Astra-Zeneca Pharmaceuticals

Drug and food interactions

Major

selumetinib food

Applies to: selumetinib

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of selumetinib, which undergoes metabolism primarily by CYP450 3A4 and to a lesser extent by CYP450 2C19, 1A2, 2C9, 2E1 and 3A5, as well as glucuronidation by UGT1A1 and UGT1A3. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. When coadministered with itraconazole, a potent CYP450 3A4 inhibitor, selumetinib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 19% and 49%, respectively. When coadministered with fluconazole, a potent CYP450 2C19 and moderate CYP450 3A4 inhibitor, selumetinib Cmax and AUC increased by 26% and 53%, respectively. Concomitant use of erythromycin, a moderate CYP450 3A4 inhibitor, is predicted to increase selumetinib Cmax and AUC by 23% and 41%, respectively. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to selumetinib may increase the risk and/or severity of serious adverse effects such as cardiomyopathy (decrease in left ventricular ejection fraction by 10% or more below baseline), ocular toxicity (blurred vision, photophobia, cataracts, ocular hypertension, retinal pigment epithelial detachment, retinal vein occlusion), gastrointestinal toxicity (diarrhea, colitis), skin toxicity (dermatitis acneiform, maculopapular rash, eczema), and musculoskeletal toxicity (creatine phosphokinase elevations, myalgia, rhabdomyolysis).

MANAGEMENT: Patients should avoid consumption of grapefruit, grapefruit juice, or supplements that contain grapefruit during treatment with selumetinib.

References (2)
  1. (2024) "Product Information. Koselugo (selumetinib)." Alexion Pharmaceuticals Inc
  2. (2024) "Product Information. Koselugo (selumetinib)." AstraZeneca UK Ltd
Moderate

itraconazole food

Applies to: itraconazole

ADJUST DOSING INTERVAL: Food increases the absorption of itraconazole capsules but decreases the absorption of itraconazole oral solution. Cola beverages may increase the bioavailability of itraconazole capsules. Itraconazole capsules require an acidic gastric pH for adequate dissolution and subsequent absorption. Cola beverages help lower gastric pH and improve absorption.

GENERALLY AVOID: Grapefruit juice may impair the absorption of itraconazole capsules, resulting in decreased antifungal effects. In a small, randomized, crossover study, the administration of itraconazole capsules with double-strength grapefruit juice (compared to water) was associated with significantly decreased (43%) plasma concentrations of itraconazole and its pharmacologically active hydroxy metabolite, as well as delayed times to reach peak concentrations of both. The exact mechanism of interaction is unknown but may involve reduced absorption of itraconazole secondary to enhanced activity of intestinal P-glycoprotein drug efflux pumps and delayed gastric emptying induced by certain compounds present in grapefruits. Another study reported no pharmacokinetic changes with single-strength grapefruit juice. Whether or not these observations apply to itraconazole oral solution is unknown.

MANAGEMENT: The manufacturer recommends that the capsules be taken immediately after a full meal and the solution be taken on an empty stomach to ensure maximal absorption. Cola beverages may help increase the bioavailability of itraconazole capsules, particularly in patients with hypochlorhydria or those treated concomitantly with gastric acid suppressants. Until more information is available, it may be advisable to avoid the consumption of grapefruits and grapefruit juice during itraconazole therapy.

References (10)
  1. Van Peer A, Woestenborghs R, Heykants J, et al. (1989) "The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects." Eur J Clin Pharmacol, 36, p. 423-6
  2. Wishart JM (1987) "The influence of food on the pharmacokinetics of itraconazole in patients with superficial fungal infection." J Am Acad Dermatol, 17, p. 220-3
  3. (2002) "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals
  4. Barone JA, Koh JG, Bierman RH, Colaizzi JL, Swanson KA, Gaffar MC, Moskovitz BL, Mechlinski W, Van de Velde V (1993) "Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers." Antimicrob Agents Chemother, 37, p. 778-84
  5. Zimmermann T, Yeates RA, Albrecht M, Laufen H, Wildfeuer A (1994) "Influence of concomitant food intake on the gastrointestinal absorption of fluconazole and itraconazole in japanese subjects." Int J Clin Pharmacol Res, 14, p. 87-93
  6. (2022) "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals
  7. Kawakami M, Suzuki K, Ishizuka T, Hidaka T, Matsuki Y, Nakamura H (1998) "Effect of grapefruit juice on pharmacokinetics of itraconazole in healthy subjects." Int J Clin Pharmacol Ther, 36, p. 306-8
  8. Barone JA, Moskotitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, Jessen L (1998) "Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers." Pharmacotherapy, 18, p. 295-301
  9. Penzak SR, Gubbins PO, Gurley BJ, Wang PL, Saccente M (1999) "Grapefruit juice decreases the systemic availability of itraconazole capsules in healthy volunteers." Ther Drug Monit, 21, p. 304-9
  10. Katz HI (1999) "Drug interactions of the newer oral antifungal agents." Br J Dermatol, 141, p. 26-32

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.