Skip to main content

Drug Interactions between itraconazole and Mitigare

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

itraconazole colchicine

Applies to: itraconazole and Mitigare (colchicine)

GENERALLY AVOID: Coadministration with inhibitors of CYP450 3A4 may significantly increase the serum concentrations of colchicine, which is primarily metabolized by the isoenzyme. Clinical toxicity including myopathy, neuropathy, multiorgan failure, and pancytopenia may occur. In one case report, a patient with familial Mediterranean fever and amyloidosis involving the kidney, liver, and gastrointestinal tract was admitted to the hospital with life-threatening colchicine toxicity after a two-week course of erythromycin, a moderate CYP450 3A4 inhibitor. During the year prior to admission, the patient had developed recurrent diarrhea and abdominal pain and demonstrated toxic levels of colchicine on two occasions. It is likely the patient had acute colchicine toxicity brought on by the addition of erythromycin and superimposed on chronic colchicine intoxication secondary to renal and hepatic impairment. The patient improved with supportive therapy and intensive hemodialysis and was discharged on day 70 of hospitalization. Another report describes two fatal cases of agranulocytosis due to presumed interaction between colchicine and clarithromycin, a potent CYP450 3A4 inhibitor. Risk factors include mild liver function test abnormalities in one patient and end-stage renal failure in the other. Several other cases of suspected interaction with clarithromycin have also been reported in which patients developed rhabdomyolysis, pancytopenia, or neuromyopathy during treatment with colchicine. In most cases, concomitant risk factors such as preexisting renal and/or hepatic impairment were present. In a retrospective study of 116 patients who were prescribed clarithromycin and colchicine during the same hospital admission, 9 out of 88 patients (10.2%) who received the two drugs concomitantly died, compared to only 1 of 28 patients (3.6%) who received the drugs sequentially. The rate of pancytopenia was 10.2% in the concomitant group versus 0% in the sequential group. Multivariate analysis of the patients who received concomitant therapy found that longer overlapped therapy, the presence of baseline renal impairment, and the development of pancytopenia were independently associated with death. Overall, the risk of death was increased 25-fold in patients who received concomitant therapy and who developed pancytopenia.

MANAGEMENT: Due to the risk of life-threatening and fatal toxicity, concomitant use of colchicine with potent CYP450 3A4 inhibitors should generally be avoided if possible. Otherwise, caution is advised. In patients with normal renal and hepatic function, the dosage of colchicine should be reduced when used with potent CYP450 3A4 inhibitors or within 14 days of using them. Some authorities specify dose adjustment for gout (treatment and prophylaxis) and familial Mediterranean fever. For the treatment of acute gout flares, the recommended dose is 0.6 mg for one dose, followed by 0.3 mg one hour later. Administration should not be repeated for at least three days. For the prophylaxis of gout flares, the adjusted dosage should be 0.3 mg once a day if the original regimen was 0.6 mg twice a day, and 0.3 mg once every other day if the original regimen was 0.6 once a day. For the treatment of familial Mediterranean fever, the maximum dosage of colchicine is 0.6 mg/day (may be given as 0.3 mg twice a day) when used in the presence of potent CYP450 3A4 inhibitors. Patients should be advised to contact their physician if they experience symptoms of toxicity such as abdominal pain, nausea, vomiting, diarrhea, fatigue, myalgia, asthenia, hyporeflexia, paresthesia, and numbness. Coadministration of colchicine with potent CYP450 3A4 inhibitors in patients with renal or hepatic impairment is considered contraindicated. The product labeling for itraconazole states that concomitant use with colchicine is contraindicated in patients with moderate to severe renal or hepatic impairment during and for 2 weeks after treatment with itraconazole; in all other patient's concomitant treatment is not recommended during and 2 weeks after treatment with itraconazole.

References

  1. Caraco Y, Putterman C, Rahamimov R, Ben-Chetrit E (1992) "Acute colchicine intoxication: possible role of erythromycin administration." J Rheumatol, 19, p. 494-6
  2. (2002) "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals
  3. Schiff D, Drislane FW (1992) "Rapid-onset colchicine myoneuropathy." Arthritis Rheum, 35, p. 1535-6
  4. Putterman C, Ben-Chetrit E, Caraco Y, Levy M (1991) "Colchicine intoxication: clinical pharmacology, risk factors, features, and management." Semin Arthritis Rheum, 21, p. 143-55
  5. (2001) "Product Information. Biaxin (clarithromycin)." Abbott Pharmaceutical
  6. Boomershine KH (2002) "Colchicine-induced rhabdomyolysis." Ann Pharmacother, 36, p. 824-6
  7. (2003) "Severe colchicine-macrolide interactions." Prescrire Int, 12, p. 18-9
  8. Tateishi T, Soucek P, Caraco Y, Guengerich FP, Wood AJ (1996) "Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation." Biochem Pharmacol, 53, p. 111-6
  9. Dogukan A, Oymak FS, Taskapan H, Guven M, Tokgoz B, Utas C (2001) "Acute fatal colchicine intoxication in a patient on continuous ambulatory peritoneal dialysis (CAPD). Possible role of clarithromycin administration." Clin Nephrol, 55, p. 181-2
  10. Rollot F, Pajot O, Chauvelot-Moachon L, Nazal EM, Kelaidi C, Blanche P (2004) "Acute colchicine intoxication during clarithromycin administration." Ann Pharmacother, 38, p. 2074-7
  11. Wilbur K, Makowsky M (2004) "Colchicine myotoxicity: case reports and literature review." Pharmacotherapy, 24, p. 1784-92
  12. Hung IF, Wu AK, Cheng VC, et al. (2005) "Fatal interaction between clarithromycin and colchicine in patients with renal insufficiency: a retrospective study." Clin Infect Dis, 41, p. 291-300
  13. Cheng VC, Ho PL, Yuen KY (2005) "Two probable cases of serious drug interaction between clarithromycin and colchicine." South Med J, 98, p. 811-3
  14. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  15. Akdag I, Ersoy A, Kahvecioglu S, Gullulu M, Dilek K (2006) "Acute colchicine intoxication during clarithromycin administration in patients with chronic renal failure." J Nephrol, 19, p. 515-7
  16. Cerner Multum, Inc. "Australian Product Information."
  17. van der Velden W, Huussen J, Ter Laak H, de Sevaux R (2008) "Colchicine-induced neuromyopathy in a patient with chronic renal failure: the role of clarithromycin." Neth J Med, 66, p. 204-6
  18. (2008) "Colchicine: serious interactions." Prescrire Int, 17, p. 151-3
  19. (2009) "Product Information. Colcrys (colchicine)." AR Scientific Inc
  20. McKinnell J, Tayek JA (2009) "Short term treatment with clarithromycin resulting in colchicine-induced rhabdomyolysis." J Clin Rheumatol, 15, p. 303-5
  21. Terkeltaub RA, Furst DE, Digiacinto JL, Kook KA, Davis MW (2011) "Novel evidence-based colchicine dose-reduction algorithm to predict and prevent colchicine toxicity in the presence of cytochrome P450 3A4/P-glycoprotein inhibitors." Arthritis Rheum, 63, p. 2226-37
  22. (2011) "Product Information. Victrelis (boceprevir)." Schering-Plough Corporation
  23. (2011) "Product Information. Incivek (telaprevir)." Vertex Pharmaceuticals
  24. Cohen O, Locketz G, Hershko AY, Gorshtein A, Levy Y (2015) "Colchicine-clarithromycin-induced rhabdomyolysis in Familial Mediterranean Fever patients under treatment for Helicobacter pylori." Rheumatol Int
View all 24 references

Switch to consumer interaction data

Drug and food interactions

Major

colchicine food

Applies to: Mitigare (colchicine)

GENERALLY AVOID: Coadministration with grapefruit juice may increase the serum concentrations of colchicine. Clinical toxicity including myopathy, neuropathy, multiorgan failure, and pancytopenia may occur. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism and P-glycoprotein efflux in the gut wall by certain compounds present in grapefruits. A published case report describes an eight-year-old patient with familial Mediterranean fever who developed acute clinical colchicine intoxication after ingesting approximately one liter of grapefruit juice per day for two months prior to hospital admission while being treated with colchicine 2 mg/day. Her condition progressed to circulatory shock and multiorgan failure, but she recovered with supportive therapy after 24 days in the hospital. In a study of 21 healthy volunteers, administration of 240 mL grapefruit juice twice a day for 4 days was found to have no significant effect on the pharmacokinetics of a single 0.6 mg dose of colchicine. However, significant interactions have been reported with other CYP450 3A4 inhibitors such as clarithromycin, diltiazem, erythromycin, ketoconazole, ritonavir, and verapamil.

MANAGEMENT: Patients treated with colchicine should be advised to avoid the consumption of grapefruit and grapefruit juice, and to contact their physician if they experience symptoms of colchicine toxicity such as abdominal pain, nausea, vomiting, diarrhea, fatigue, myalgia, asthenia, hyporeflexia, paresthesia, and numbness.

References

  1. Pettinger WA (1975) "Clonidine, a new antihypertensive drug." N Engl J Med, 293, p. 1179-80
  2. Caraco Y, Putterman C, Rahamimov R, Ben-Chetrit E (1992) "Acute colchicine intoxication: possible role of erythromycin administration." J Rheumatol, 19, p. 494-6
  3. Schiff D, Drislane FW (1992) "Rapid-onset colchicine myoneuropathy." Arthritis Rheum, 35, p. 1535-6
  4. Putterman C, Ben-Chetrit E, Caraco Y, Levy M (1991) "Colchicine intoxication: clinical pharmacology, risk factors, features, and management." Semin Arthritis Rheum, 21, p. 143-55
  5. Boomershine KH (2002) "Colchicine-induced rhabdomyolysis." Ann Pharmacother, 36, p. 824-6
  6. (2003) "Severe colchicine-macrolide interactions." Prescrire Int, 12, p. 18-9
  7. Tateishi T, Soucek P, Caraco Y, Guengerich FP, Wood AJ (1996) "Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation." Biochem Pharmacol, 53, p. 111-6
  8. Dogukan A, Oymak FS, Taskapan H, Guven M, Tokgoz B, Utas C (2001) "Acute fatal colchicine intoxication in a patient on continuous ambulatory peritoneal dialysis (CAPD). Possible role of clarithromycin administration." Clin Nephrol, 55, p. 181-2
  9. Rollot F, Pajot O, Chauvelot-Moachon L, Nazal EM, Kelaidi C, Blanche P (2004) "Acute colchicine intoxication during clarithromycin administration." Ann Pharmacother, 38, p. 2074-7
  10. Wilbur K, Makowsky M (2004) "Colchicine myotoxicity: case reports and literature review." Pharmacotherapy, 24, p. 1784-92
  11. Hung IF, Wu AK, Cheng VC, et al. (2005) "Fatal interaction between clarithromycin and colchicine in patients with renal insufficiency: a retrospective study." Clin Infect Dis, 41, p. 291-300
  12. Cheng VC, Ho PL, Yuen KY (2005) "Two probable cases of serious drug interaction between clarithromycin and colchicine." South Med J, 98, p. 811-3
  13. Akdag I, Ersoy A, Kahvecioglu S, Gullulu M, Dilek K (2006) "Acute colchicine intoxication during clarithromycin administration in patients with chronic renal failure." J Nephrol, 19, p. 515-7
  14. van der Velden W, Huussen J, Ter Laak H, de Sevaux R (2008) "Colchicine-induced neuromyopathy in a patient with chronic renal failure: the role of clarithromycin." Neth J Med, 66, p. 204-6
  15. Goldbart A, Press J, Sofer S, Kapelushnik J (2000) "Near fatal acute colchicine intoxication in a child. A case report." Eur J Pediatr, 159, p. 895-7
  16. (2008) "Colchicine: serious interactions." Prescrire Int, 17, p. 151-3
  17. (2009) "Product Information. Colcrys (colchicine)." AR Scientific Inc
  18. Dahan A, Amidon GL (2009) "Grapefruit juice and its constitueants augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein." Pharm Res, 26, p. 883-92
  19. McKinnell J, Tayek JA (2009) "Short term treatment with clarithromycin resulting in colchicine-induced rhabdomyolysis." J Clin Rheumatol, 15, p. 303-5
View all 19 references

Switch to consumer interaction data

Moderate

itraconazole food

Applies to: itraconazole

ADJUST DOSING INTERVAL: Food increases the absorption of itraconazole capsules but decreases the absorption of itraconazole oral solution. Cola beverages may increase the bioavailability of itraconazole capsules. Itraconazole capsules require an acidic gastric pH for adequate dissolution and subsequent absorption. Cola beverages help lower gastric pH and improve absorption.

GENERALLY AVOID: Grapefruit juice may impair the absorption of itraconazole capsules, resulting in decreased antifungal effects. In a small, randomized, crossover study, the administration of itraconazole capsules with double-strength grapefruit juice (compared to water) was associated with significantly decreased (43%) plasma concentrations of itraconazole and its pharmacologically active hydroxy metabolite, as well as delayed times to reach peak concentrations of both. The exact mechanism of interaction is unknown but may involve reduced absorption of itraconazole secondary to enhanced activity of intestinal P-glycoprotein drug efflux pumps and delayed gastric emptying induced by certain compounds present in grapefruits. Another study reported no pharmacokinetic changes with single-strength grapefruit juice. Whether or not these observations apply to itraconazole oral solution is unknown.

MANAGEMENT: The manufacturer recommends that the capsules be taken immediately after a full meal and the solution be taken on an empty stomach to ensure maximal absorption. Cola beverages may help increase the bioavailability of itraconazole capsules, particularly in patients with hypochlorhydria or those treated concomitantly with gastric acid suppressants. Until more information is available, it may be advisable to avoid the consumption of grapefruits and grapefruit juice during itraconazole therapy.

References

  1. Van Peer A, Woestenborghs R, Heykants J, et al. (1989) "The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects." Eur J Clin Pharmacol, 36, p. 423-6
  2. Wishart JM (1987) "The influence of food on the pharmacokinetics of itraconazole in patients with superficial fungal infection." J Am Acad Dermatol, 17, p. 220-3
  3. (2002) "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals
  4. Barone JA, Koh JG, Bierman RH, Colaizzi JL, Swanson KA, Gaffar MC, Moskovitz BL, Mechlinski W, Van de Velde V (1993) "Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers." Antimicrob Agents Chemother, 37, p. 778-84
  5. Zimmermann T, Yeates RA, Albrecht M, Laufen H, Wildfeuer A (1994) "Influence of concomitant food intake on the gastrointestinal absorption of fluconazole and itraconazole in japanese subjects." Int J Clin Pharmacol Res, 14, p. 87-93
  6. (2022) "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals
  7. Kawakami M, Suzuki K, Ishizuka T, Hidaka T, Matsuki Y, Nakamura H (1998) "Effect of grapefruit juice on pharmacokinetics of itraconazole in healthy subjects." Int J Clin Pharmacol Ther, 36, p. 306-8
  8. Barone JA, Moskotitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, Jessen L (1998) "Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers." Pharmacotherapy, 18, p. 295-301
  9. Penzak SR, Gubbins PO, Gurley BJ, Wang PL, Saccente M (1999) "Grapefruit juice decreases the systemic availability of itraconazole capsules in healthy volunteers." Ther Drug Monit, 21, p. 304-9
  10. Katz HI (1999) "Drug interactions of the newer oral antifungal agents." Br J Dermatol, 141, p. 26-32
View all 10 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.