Skip to main content

Drug Interactions between Isoptin IV and Valturna

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

valsartan aliskiren

Applies to: Valturna (aliskiren / valsartan) and Valturna (aliskiren / valsartan)

CONTRAINDICATED: In patients with type 2 diabetes and renal impairment, coadministration of aliskiren with ACE inhibitors or angiotensin receptor blockers (ARBs) has been associated with an increased risk of adverse events including renal complications, hyperkalemia, and hypotension. Interim review of data from the ALTITUDE study after 18 to 24 months revealed no additional benefit and a higher incidence of adverse events when aliskiren 300 mg daily, as opposed to placebo, was added to optimal cardiovascular treatment including an ACE inhibitor or ARB. Another preliminary finding was a slight excess of death or stroke in the aliskiren group; however, the relationship to aliskiren treatment has not been established. ALTITUDE was a multinational study in 8,606 patients from 36 countries evaluating the potential benefits of aliskiren to reduce the risk of cardiovascular and renal events in patients with type 2 diabetes and renal impairment, who are known to be at high risk of cardiovascular and renal events. The trial was halted in December 2011 per recommendation of the independent data monitoring committee overseeing the study.

GENERALLY AVOID: In patients without diabetes, coadministration of aliskiren with ACE inhibitors or ARBs may also be associated with increased risk of symptomatic hypotension, hyperkalemia, and changes in renal function including acute renal failure. All drugs inhibiting the renin-angiotensin system (RAS) can have these effects, which may be additive during concomitant administration. The risk of symptomatic hypotension is increased in the presence of marked volume and/or salt depletion. Elevations in serum potassium levels to greater than 5.5 mEq/L were infrequent with aliskiren alone (0.9% compared to 0.6% with placebo), but increased to 5.5% when used in combination with an ACE inhibitor in a diabetic population. Patients whose renal function may depend in part on the activity of the RAS, including those with renal artery stenosis, severe heart failure, postmyocardial infarction or volume depletion, may be at particular risk for developing acute renal failure with these drugs.

MANAGEMENT: The use of aliskiren with ACE inhibitors or ARBs is considered contraindicated in patients with diabetes and should be avoided in general, particularly in patients with moderate to severe renal impairment (i.e., creatinine clearance (CrCl) < 60 mL/min). Prescribers should not initiate aliskiren in diabetic patients who are taking an ACE inhibitor or an ARB, and should stop any aliskiren-containing treatment if these patients are already receiving the combination. Alternative antihypertensive treatment should be considered as necessary. Most patients do not obtain any additional benefit from combination therapy relative to monotherapy; therefore, the potential risks should be thoroughly assessed when aliskiren is prescribed with ACE inhibitors or ARBs for the treatment of essential hypertension in patients without diabetes. Volume or salt depletion should be corrected prior to initiation of treatment. Routine monitoring of blood pressure, electrolytes, and renal function are recommended, particularly in the elderly or patients with worsening heart failure or a risk for dehydration. Potassium supplementation should generally be avoided unless it is closely monitored, and patients should be advised to seek medical attention if they experience signs and symptoms of hyperkalemia such as weakness, listlessness, confusion, tingling of the extremities, and irregular heartbeat.

References

  1. (2007) "Product Information. Tekturna (aliskiren)." Novartis Pharmaceuticals
  2. Novartis International AG (2012) Novartis announces termination of ALTITUDE study with Rasilez Tekturna in high-risk patients with diabetes and renal impairment. http://cardiobrief.files.wordpress.com/2011/12/novartis-aliskiren-altitude-pr.pdf
  3. Chief Scientific Officer and Senior Vice-President Clinical and Regulatory Affairs, Health Canada, Leclerc JM (2012) Potential risks of cardiovascular and renal adverse events in patients with type 2 diabetes treated with aliskiren (RASILEZ) or aliskiren/hydrochlorothiazide (RASILEZ HCT). http://www.hc-sc.gc.ca/dhp-mps/alt_formats/pdf/medeff/advisories-avis/prof/2012/r
  4. National Kidney Foundation (2012) "KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 update." Am J Kidney Dis, 60, p. 850-86
  5. EMA. European Medicines Agency (2014) PRAC recommends against combined use of medicines affecting the renin-angiotensin (RAS) system: recommendation will now be considered by CHMP for final opinion. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Renin-angiotensin_sys
  6. MHRA. Medicines and Healthcare Regulatory Agency (2014) Combination use of medicines from different classes of renin-angiotensin system blocking agents: risk of hyperkalaemia, hypotension, and impaired renal function--new warnings. http://www.mhra.gov.uk/Safetyinformation/DrugSafetyUpdate/CON426905
View all 6 references

Switch to consumer interaction data

Moderate

verapamil aliskiren

Applies to: Isoptin IV (verapamil) and Valturna (aliskiren / valsartan)

MONITOR: Coadministration with inhibitors of CYP450 3A4 and P-glycoprotein may increase the plasma concentrations and pharmacologic effects of aliskiren, which is a substrate of both the isoenzyme and efflux transporter. According to the product labeling, plasma levels of aliskiren were increased approximately 80% by the potent CYP450 3A4 and moderate P-gp inhibitor ketoconazole at a dosage of 200 mg twice daily. A 400 mg once daily dose of ketoconazole was not studied, but would be expected to further increase the magnitude of interaction. Similarly, plasma levels of aliskiren increased by approximately 2-fold when coadministered with the moderate CYP450 3A4 and potent P-gp inhibitor verapamil at a dosage of 240 mg once daily.

MANAGEMENT: Pharmacologic response to aliskiren should be monitored more closely whenever a CYP450 3A4 and/or P-gp inhibitor is added to or withdrawn from therapy, and the aliskiren dosage adjusted if necessary. Patients should be advised to notify their physician if they experience excessive adverse effects of aliskiren such as dizziness, lightheadedness, diarrhea, abdominal pain, and gastroesophageal reflux.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. (2007) "Product Information. Tekturna (aliskiren)." Novartis Pharmaceuticals
  4. Tapaninen T, Backman JT, Kurkinen K, Neuvonen P, Niemi M (2011) "Itraconazole, a P-glycoprotein and CYP3A4 inhibitor, markedly raises the plasma concentrations and enhances the renin-inhibiting effect of aliskiren." J Clin Pharmacol, 51, p. 359-67
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Moderate

verapamil food

Applies to: Isoptin IV (verapamil)

GENERALLY AVOID: Consumption of large quantities of grapefruit juice may be associated with significantly increased plasma concentrations of oral verapamil. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. One study reported no significant effect of a single administration of grapefruit juice on the pharmacokinetics of verapamil in ten hypertensive patients receiving chronic therapy. In another study conducted in nine healthy male volunteers, administration of 120 mg oral verapamil twice daily for 3 days following pretreatment with 200 mL grapefruit juice twice daily for 5 days resulted in a 57% increase in S-verapamil peak plasma concentration (Cmax), a 36% increase in S-verapamil systemic exposure (AUC), a 40% increase in R-verapamil Cmax, and a 28% increase in R-verapamil AUC compared to administration following orange juice. Elimination half-life and renal clearance of both S- and R-verapamil were not affected by grapefruit juice, and there were no significant effects on blood pressure, heart rate, or PR interval. A third study reported a 1.63-fold increase in Cmax and a 1.45-fold increase in AUC of (R,S)-verapamil in 24 young, healthy volunteers given verapamil sustained-release 120 mg twice daily for 7 days with 250 mL grapefruit juice four times daily on days 5 through 7. Two subjects developed PR interval prolongation of more than 350 ms during grapefruit juice coadministration. A high degree of interindividual variability has been observed in these studies. The interaction was also suspected in a case report of a 42-year-old woman who developed complete heart block, hypotension, hypoxic respiratory failure, severe anion gap metabolic acidosis, and hyperglycemia following accidental ingestion of three verapamil sustained-release 120 mg tablets over a span of six hours. The patient's past medical history was remarkable only for migraine headaches, for which she was receiving several medications including verapamil. Prior to admission, the patient had a 2-week history of poorly controlled migraine, and the six hours preceding hospitalization she suffered from worsening headache and palpitations progressing to altered sensorium. An extensive workup revealed elevated verapamil and norverapamil levels more than 4.5 times above the upper therapeutic limits. These levels also far exceeded those reported in the medical literature for patients taking verapamil 120 mg every 6 hours, or 480 mg in a 24-hour period. The patient recovered after receiving ventilator and vasopressor support. Upon questioning, it was discovered that the patient had been drinking large amounts of grapefruit juice (3 to 4 liters total) the week preceding her admission due to nausea. No other sources or contributing factors could be found for the verapamil toxicity.

MANAGEMENT: Patients treated with oral verapamil should avoid the consumption of large amounts of grapefruit or grapefruit juice to prevent any undue fluctuations in serum drug levels. Patients should be advised to seek medical attention if they experience edema or swelling of the lower extremities; sudden, unexplained weight gain; difficulty breathing; chest pain or tightness; or hypotension as indicated by dizziness, fainting, or orthostasis.

References

  1. McAllister RG, Jr (1982) "Clinical pharmacology of slow channel blocking agents." Prog Cardiovasc Dis, 25, p. 83-102
  2. (2001) "Product Information. Covera-HS (verapamil)." Searle
  3. Zaidenstein R, Dishi V, Gips M, Soback S, Cohen N, Weissgarten J, Blatt A, Golik A (1998) "The effect of grapefruit juice on the pharmacokinetics of orally administered verapamil." Eur J Clin Pharmacol, 54, p. 337-40
  4. Ho PC, Ghose K, Saville D, Wanwimolruk S (2000) "Effect of grapefruit juice on pharmacokinetics and pharmacodynamics of verapamil enantiomers in healthy volunteers." Eur J Clin Pharmacol, 56, p. 693-8
  5. Fuhr U, Muller-Peltzer H, Kern R, et al. (2002) "Effects of grapefruit juice and smoking on verapamil concentrations in steady state." Eur J Clin Pharmacol, 58, p. 45-53
  6. Bailey DG, Dresser GK (2004) "Natural products and adverse drug interactions." Can Med Assoc J, 170, p. 1531-2
  7. Bailey DG, Malcolm J, Arnold O, Spence JD (2004) "Grapefruit juice-drug interactions. 1998." Br J Clin Pharmacol, 58, S831-40; discussion S841-3
  8. Arayne MS, Sultana N, Bibi Z (2005) "Review: grape fruit juice - drug interactions." Pak J Pharm Sci, 18, p. 45-57
  9. Pillai U, Muzaffar J, Sandeep S, Yancey A (2009) "Grapefruit juice and verapamil: a toxic cocktail." South Med J, 102, p. 308-9
View all 9 references

Switch to consumer interaction data

Moderate

valsartan food

Applies to: Valturna (aliskiren / valsartan)

GENERALLY AVOID: Moderate-to-high dietary intake of potassium, especially salt substitutes, may increase the risk of hyperkalemia in some patients who are using angiotensin II receptor blockers (ARBs). ARBs can promote hyperkalemia through inhibition of angiotensin II-induced aldosterone secretion. Patients with diabetes, heart failure, dehydration, or renal insufficiency have a greater risk of developing hyperkalemia.

MANAGEMENT: Patients should receive dietary counseling and be advised to not use potassium-containing salt substitutes or over-the-counter potassium supplements without consulting their physician. If salt substitutes are used concurrently, regular monitoring of serum potassium levels is recommended. Patients should also be advised to seek medical attention if they experience symptoms of hyperkalemia such as weakness, irregular heartbeat, confusion, tingling of the extremities, or feelings of heaviness in the legs.

References

  1. (2001) "Product Information. Cozaar (losartan)." Merck & Co., Inc
  2. (2001) "Product Information. Diovan (valsartan)." Novartis Pharmaceuticals

Switch to consumer interaction data

Moderate

aliskiren food

Applies to: Valturna (aliskiren / valsartan)

GENERALLY AVOID: Coadministration with orange, apple, or grapefruit juice may significantly decrease the oral bioavailability and renin-inhibiting effect of aliskiren. The exact mechanism of interaction is unknown, but may include inhibition of OATP2B1-mediated influx of aliskiren in the small intestine, formation of insoluble complexes between fruit juice constituents and aliskiren, and/or increased ionization of aliskiren due to reduced intestinal pH. In 12 healthy volunteers, 200 mL of either orange juice or apple juice administered three times daily for 5 days in combination with a single 150 mg oral dose of aliskiren on day 3 reduced the mean aliskiren peak plasma concentration (Cmax) and systemic exposure (AUC) by approximately 80% and 60%, respectively, compared to water. Plasma renin activity was 87% and 67% higher at 24 hours postdose when aliskiren was administered with orange juice and apple juice, respectively, compared to water. No significant differences were observed in the blood pressure or heart rate between treatments. However, this may be due to the delayed onset of aliskiren's blood pressure-lowering effect, which would not be apparent following a single dose. A similar pharmacokinetic interaction has been reported with grapefruit juice. In 11 healthy volunteers, 200 mL of normal strength grapefruit juice administered three times daily for 5 days in combination with a single 150 mg oral dose of aliskiren on day 3 reduced the mean aliskiren Cmax and AUC by 81% and 61%, respectively, but there was no change in plasma renin activity compared to water. A high degree of interpatient variability was observed with all three interactions.

MONITOR: High-fat meals can substantially reduce the gastrointestinal absorption of aliskiren. According to the product labeling, administration of aliskiren with a high-fat meal decreased the mean peak plasma concentration (Cmax) and systemic exposure (AUC) by 85% and 71%, respectively. In clinical trials, however, aliskiren was administered without a fixed requirement in relation to meals.

MANAGEMENT: To ensure steady systemic drug levels and therapeutic effects, patients should establish a routine pattern for administration of aliskiren with regard to meals. Coadministration with orange, apple, or grapefruit juice should be avoided, especially if these juices are to be consumed on a regular basis or shortly before or after aliskiren dosing.

References

  1. (2007) "Product Information. Tekturna (aliskiren)." Novartis Pharmaceuticals
  2. Vaidyanathan S, Jarugula V, Dieterich HA, Howard D, Dole WP (2008) "Clinical pharmacokinetics and pharmacodynamics of aliskiren." Clin Pharmacokinet, 47, p. 515-31
  3. Tapaninen T, Neuvonen PJ, Niemi M (2010) "Grapefruit juice greatly reduces the plasma concentrations of the OATP2B1 and CYP3A4 substrate aliskiren." Clin Pharmacol Ther, 88, p. 339-42
  4. Tapaninen T, Neuvonen PJ, Niemi M (2010) "Orange and apple juices greatly reduce the plasma concentrations of the OATP2B1 substrate aliskiren." Br J Clin Pharmacol, 71, p. 718-26
View all 4 references

Switch to consumer interaction data

Moderate

verapamil food

Applies to: Isoptin IV (verapamil)

GENERALLY AVOID: Verapamil may increase the blood concentrations and intoxicating effects of ethanol. The exact mechanism of interaction is unknown but may involve verapamil inhibition of ethanol metabolism. In 10 healthy, young volunteers, verapamil (80 mg orally every 8 hours for 6 days) increased the mean peak blood concentration (Cmax) and the 12-hour area under the concentration-time curve (AUC) of ethanol (0.8 g/kg single oral dose) by 17% and 30%, respectively, compared to placebo. Verapamil AUCs were positively correlated to increased ethanol blood AUC values. Subjectively (i.e. each subject's perception of intoxication as measured on a visual analog scale), verapamil also significantly increased the area under the ethanol effect versus time curve but did not change the peak effect or time to peak effect.

MANAGEMENT: Patients treated with verapamil should be counseled to avoid alcohol consumption.

References

  1. Bauer LA, Schumock G, Horn J, Opheim K (1992) "Verapamil inhibits ethanol elimination and prolongs the perception of intoxication." Clin Pharmacol Ther, 52, p. 6-10
  2. (2001) "Product Information. Isoptin (verapamil)." Knoll Pharmaceutical Company

Switch to consumer interaction data

Moderate

verapamil food

Applies to: Isoptin IV (verapamil)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.