Drug Interactions between isoniazid and tizanidine
This report displays the potential drug interactions for the following 2 drugs:
- isoniazid
- tizanidine
Interactions between your drugs
isoniazid tiZANidine
Applies to: isoniazid and tizanidine
GENERALLY AVOID: Coadministration with inhibitors of CYP450 1A2 may significantly increase the plasma concentrations and pharmacologic effects of tizanidine, which is a sensitive substrate of the isoenzyme. In 10 healthy volunteers, administration of a single 4 mg dose of tizanidine following pretreatment with the potent CYP450 1A2 inhibitor fluvoxamine (100 mg orally once daily for 4 days) increased tizanidine peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 12- and 33-fold, respectively, compared to placebo. The mean elimination half-life of tizanidine was prolonged from 1.5 to 4.3 hours. Similarly, pretreatment with the moderate CYP450 1A2 inhibitor ciprofloxacin (500 mg orally twice daily for 3 days) increased Cmax and AUC of a single 4 mg dose of tizanidine by an average of 7- and 10-fold, respectively, compared to placebo. Pharmacologic effects of tizanidine as measured by changes in blood pressure, heart rate, performance testing, subjective drug effect, and drowsiness were significantly greater with both fluvoxamine and ciprofloxacin compared to placebo. Vemurafenib, another moderate CYP450 1A2 inhibitor, increased tizanidine AUC by 4.7-fold. The interaction was also suspected in a 70-year-old patient treated with tizanidine who developed low heart rate, low body temperature, dry mouth, and anuresis two weeks after initiating fluvoxamine. A retrospective review of patient medical records at the hospital where the patient was admitted revealed a significantly higher incidence of tizanidine-related adverse effects in patients treated concomitantly with fluvoxamine than that reported for tizanidine alone in the product labeling (26.1% vs. 5.3%), and those who experienced adverse effects were older and received higher dosages of both drugs than those who did not have adverse effects with the combination. Another CYP450 1A2 inhibitor, rofecoxib, has also been reported to potentiate the adverse effects of tizanidine. There have been postmarketing reports of adverse events mostly involving the nervous system (e.g., hallucinations, psychosis, somnolence, hypotonia) and cardiovascular system (e.g., hypotension, tachycardia, bradycardia) during concomitant use of tizanidine and rofecoxib. In all cases, adverse events resolved following discontinuation of one or both drugs. Rechallenge's were not performed.
MANAGEMENT: Concomitant use of tizanidine with CYP450 1A2 inhibitors should generally be avoided. Otherwise, caution is advised if coadministration is required. Dosage adjustments may be necessary in patients who experience excessive adverse effects of tizanidine such as drowsiness, dizziness, lightheadedness, hypotension, and bradycardia.
References (8)
- (2001) "Product Information. Zanaflex (tizanidine)." Acorda Therapeutics
- (2001) "Product Information. Vioxx (rofecoxib)." Merck & Co., Inc
- Granfors MT, Backman JT, Laitila J, Neuvonen PJ (2004) "Tizanidine is mainly metabolized by cytochrome P450 1A2 in vitro." Br J Clin Pharmacol, 57, p. 349-53
- Granfors MT, Backman JT, Neuvonen M, Ahonen J, Neuvonen PJ (2004) "Fluvoxamine drastically increases concentrations and effects of tizanidine: A potentially hazardous interaction." Clin Pharmacol Ther, 75, p. 331-41
- Momo K, Doki K, Hosono H, Homma M, Kohda Y (2004) "Drug interaction of tizanidine and fluvoxamine." Clin Pharmacol Ther, 76, p. 509-10
- Granfors MT, Backman JT, Neuvonen M, Neuvonen PJ (2004) "Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism." Clin Pharmacol Ther, 76, p. 598-606
- Momo K, Homma M, Kohda Y, Ohkoshi N, Yoshizawa T, Tamaoka A (2006) "Drug interaction of tizanidine and ciprofloxacin: Case report." Clin Pharmacol Ther, 80, p. 717-9
- (2011) "Product Information. Zelboraf (vemurafenib)." Genentech
Drug and food interactions
isoniazid food
Applies to: isoniazid
GENERALLY AVOID: Concurrent use of isoniazid (INH) in patients who ingest alcohol daily may result in an increased incidence of both hepatotoxicity and peripheral neuropathy. The increase in hepatotoxicity may be due to an additive risk as both alcohol and INH are individually associated with this adverse reaction. INH-associated hepatotoxicity is believed to be due to an accumulation of toxic metabolites and may also be partly immune mediated, though the exact mechanisms are not universally agreed upon. INH is metabolized by N-acetyltransferase and CYP450 2E1. The rate of acetylation is genetically determined and generally classified as slow or rapid. Slow acetylators have been identified by some studies as having a higher risk of hepatotoxicity; therefore, this interaction may be more significant for patients who fall into this category. Other studies have postulated that alcohol-mediated CYP450 2E1 induction may play a role, as this isoenzyme is involved in INH metabolism and may be responsible for producing hepatotoxic metabolites. However, available literature is conflicting. The labeling for some INH products lists daily alcohol use or chronic alcoholism as a risk factor for hepatitis, but not all studies have found a significant association between alcohol use and INH-induced hepatotoxicity. Additionally, INH and alcohol are both associated with pyridoxine (B6) deficiency, which may increase the risk of peripheral neuropathy.
GENERALLY AVOID: Concomitant administration of isoniazid (INH) with foods containing tyramine and/or histamine may increase the risk of symptoms relating to tyramine- and/or histamine toxicity (e.g., headache, diaphoresis, flushing, palpitations, and hypotension). The proposed mechanism is INH-mediated inhibition of monoamine oxidase (MAO) and diamine oxidase (DAO), enzymes responsible for the metabolism of tyramine and histamine, respectively. Some authors have suggested that the reactions observed are mainly due to INH's effects on DAO instead of MAO or the amounts of histamine instead of tyramine present in the food. A Japanese case report recorded an example in 8 out of 25 patients on the tuberculosis ward who developed an accidental histamine poisoning after ingesting a fish paste (saury). Patients developed allergy-like symptoms, which started between 20 minutes and 2 hours after ingesting the food. A high-level of histamine (32 mg/100 g of fish) was confirmed in the saury paste and all 8 patients were both on INH and had reduced MAO concentrations. The 17 remaining patients were not on INH (n=5) or reported not eating the saury paste (n=12).
ADJUST DOSING INTERVAL: Administration with food significantly reduces oral isoniazid (INH) absorption, increasing the risk of therapeutic failure or resistance. The mechanism is unknown. Pharmacokinetic studies completed in both healthy volunteers (n=14) and tuberculosis patients (n=20 treatment-naive patients during days 1 to 3 of treatment) have resulted in almost doubling the time to reach INH's maximum concentration (tmax) and a reduction in isoniazid's maximum concentration (Cmax) of 42%-51% in patients who consumed high-fat or high-carbohydrate meals prior to INH treatment.
MANAGEMENT: The manufacturer of oral forms of isoniazid (INH) recommends administration on an empty stomach (i.e., 30 minutes before or 2 hours after meals). Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and INH concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with INH. Concomitant pyridoxine (B6) administration is also recommended to reduce the risk of peripheral neuropathy, with some authorities suggesting a dose of at least 10 mg/day. Patients should be advised to avoid foods containing tyramine (e.g., aged cheese, cured meats such as sausages and salami, fava beans, sauerkraut, soy sauce, beer, or red wine) or histamine (e.g., skipjack, tuna, mackerel, salmon) during treatment with isoniazid. Consultation of product labeling for combination products containing isoniazid and/or relevant guidelines may be helpful for more specific recommendations.
References (17)
- Smith CK, Durack DT (1978) "Isoniazid and reaction to cheese." Ann Intern Med, 88, p. 520-1
- Dimartini A (1995) "Isoniazid, tricyclics and the ''cheese reaction''." Int Clin Psychopharmacol, 10, p. 197-8
- Uragoda CG, Kottegoda SR (1977) "Adverse reactions to isoniazid on ingestion of fish with a high histamine content." Tubercle, 58, p. 83-9
- Self TH, Chrisman CR, Baciewicz AM, Bronze MS (1999) "Isoniazid drug and food interactions." Am J Med Sci, 317, p. 304-11
- (2021) "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India), 2
- (2023) "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC.
- (2023) "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd
- (2023) "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB
- Saukkonen JJ, Cohn DL, Jasmer RM, et al. (2006) "An official ATS statement: hepatotoxicity of antituberculosis therapy." Am J Respir Crit Care Med, 174, p. 935-52
- Bouazzi OE, Hammi S, Bourkadi JE, et al. (2024) First line anti-tuberculosis induced hepatotoxicity: incidence and risk factors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326068/
- Wang P, Pradhan K, Zhong XB, Ma X (2016) "Isoniazid metabolism and hepatoxicity." Acta Pharm Sin B, 6, p. 384-92
- Saktiawati AM, Sturkenboom MG, Stienstra Y, et al. (2016) "Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment naive TB patients: a randomized cross-over trial." J Antimicrob Chemother, 71, p. 703-10
- Hahn JA, Ngabirano C, Fatch R, et al. (2023) "Safety and tolerability of isoniazid preventive therapy for tuberculosis for persons with HIV with and without alcohol use." AIDS, 37, p. 1535-43
- Huang YS, Chern HD, Su WJ, et al. (2003) "Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis." Hepatology, 37, p. 924-30
- Sousou JM, Griffith EM, Marsalisi C, Reddy P (2024) Pyridoxine deficiency and neurologic dysfunction: an unlikely association. https://www.cureus.com/articles/188310-pyridoxine-deficiency-and-neurologic-dysfunction-an-unlikely-association?score_article=true#!/
- Miki M, Ishikawa T, Okayama H (2005) "An outbreak of histamine poisoning after ingestion of the ground saury paste in eight patients taking isoniazid in tuberculous ward." Intern Med, 44, p. 1133-6
- (2021) "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc.
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.