Skip to main content

Drug Interactions between HyTan and sodium polystyrene sulfonate

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

chlorpheniramine HYDROcodone

Applies to: HyTan (chlorpheniramine / hydrocodone) and HyTan (chlorpheniramine / hydrocodone)

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

sodium polystyrene sulfonate HYDROcodone

Applies to: sodium polystyrene sulfonate and HyTan (chlorpheniramine / hydrocodone)

MONITOR: Coadministration with medications that can cause constipation such as opioids may increase the risk of intestinal injuries associated with the use of sodium polystyrene sulfonate. Cases of intestinal necrosis, which may be fatal, and other serious gastrointestinal adverse events including bleeding, ischemic colitis, and perforation have been reported during treatment with sodium polystyrene sulfonate. Most cases occurred during concomitant use of sorbitol, and risk factors were present in many of the patients including prematurity, history of intestinal disease or surgery, hypovolemia, and renal insufficiency or failure. Data are limited in the medical literature regarding concomitant use of sodium polystyrene sulfonate and opioids. In one case report, intestinal obstruction occurred in an 86-year-old man who received sodium polystyrene sulfonate 15 g orally once daily for 4 days while also being treated with aluminum hydroxide 5 mL four times daily and slow-release morphine 10 mg three times daily. Although the interaction is primarily attributed to concretions of aluminum hydroxide in the intestine, the potential contribution of morphine is unknown.

MANAGEMENT: Because opioids commonly cause constipation, caution is advised when used during treatment with sodium polystyrene sulfonate. The prescribing information recommends avoiding the use of sodium polystyrene sulfonate in patients who are at risk for developing constipation or impaction, including those with a history of impaction, chronic constipation, inflammatory bowel disease, ischemic colitis, vascular intestinal atherosclerosis, previous bowel resection, or bowel obstruction, as well as those who have not had a bowel movement post-surgery. If clinically significant constipation develops, treatment with sodium polystyrene sulfonate should be discontinued until normal bowel motion is resumed. Concomitant administration of sorbitol is not recommended.

References

  1. Foresti V (1994) "Intestinal obstruction due to kayexalate in a patient concurrently treated with aluminum hydroxide and morphine sulfate." Clin Nephrol, 41, p. 252
  2. (2001) "Product Information. Kayexalate (sodium polystyrene sulfonate)." Sanofi Winthrop Pharmaceuticals
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. Cerner Multum, Inc. "Australian Product Information."
  5. Cerner Multum, Inc. (2015) "Canadian Product Information."
View all 5 references

Switch to consumer interaction data

Drug and food interactions

Major

HYDROcodone food

Applies to: HyTan (chlorpheniramine / hydrocodone)

GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including hydrocodone. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

GENERALLY AVOID: Consumption of alcohol while taking some sustained-release formulations of hydrocodone may cause rapid release of the drug, resulting in high systemic levels of hydrocodone that may be potentially lethal. Alcohol apparently can disrupt the release mechanism of some sustained-release formulations. In study subjects, the rate of absorption of hydrocodone from an extended-release formulation was found to be affected by coadministration with 40% alcohol in the fasted state, as demonstrated by an average 2.4-fold (up to 3.9-fold in one subject) increase in hydrocodone peak plasma concentration and a decrease in the time to peak concentration. Alcohol also increased the extent of absorption by an average of 1.2-fold (up to 1.7-fold in one subject).

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of hydrocodone. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism of hydrocodone by certain compounds present in grapefruit. Increased hydrocodone concentrations could conceivably increase or prolong adverse drug effects and may cause potentially fatal respiratory depression.

MANAGEMENT: Patients taking sustained-release formulations of hydrocodone should not consume alcohol or use medications that contain alcohol. In general, potent narcotics such as hydrocodone should not be combined with alcohol. Patients should also avoid consumption of grapefruit or grapefruit juice during treatment with hydrocodone.

References

  1. (2013) "Product Information. Zohydro ER (hydrocodone)." Zogenix, Inc

Switch to consumer interaction data

Moderate

chlorpheniramine food

Applies to: HyTan (chlorpheniramine / hydrocodone)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

sodium polystyrene sulfonate food

Applies to: sodium polystyrene sulfonate

GENERALLY AVOID: Potassium in foods can bind to the cation exchange resin and interfere with potassium removal in the treatment of hyperkalemia.

MANAGEMENT: Cation exchange resins should not be mixed with orange juice or other foods with a high potassium content.

ADJUST DOSING INTERVAL: Cation exchange resins may bind to other medications that are administered orally. Reduced systemic absorption and therapeutic efficacy may occur. Manufacturers have reported that polystyrene sulfonate exchange resins can decrease the absorption of lithium and levothyroxine. A more recent study found that sodium polystyrene sulfonate binds to many commonly prescribed oral medications. Another potassium-lowering drug, patiromer, has also been found to bind about half of the medications tested, some of which are commonly used in patients who require potassium-lowering drugs.

MANAGEMENT: To minimize the risk of interaction, patients should be advised to separate the dosing of the cation exchange resin from other orally administered medications by at least 3 hours. The dosing interval should be increased to 6 hours for patients with gastroparesis or other conditions resulting in delayed emptying of food from the stomach into the small intestine. Health care professionals should monitor blood levels and/or clinical response to the other medications when appropriate.

References

  1. (2001) "Product Information. Kayexalate (sodium polystyrene sulfonate)." Sanofi Winthrop Pharmaceuticals
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."

Switch to consumer interaction data

Moderate

sodium polystyrene sulfonate food

Applies to: sodium polystyrene sulfonate

ADJUST DOSING INTERVAL: Simultaneous administration of cation-donating preparations may reduce the potassium exchange capability of cation-exchange resins due to binding of the cation to the resin.

MANAGEMENT: Patients should consider separating the times of administration of the cation-exchange resin and any cation-donating preparation (e.g., mineral supplements; antacids; products containing antacids such as didanosine buffered tablets or pediatric oral solution) by several hours if possible.

References

  1. (2001) "Product Information. Kayexalate (sodium polystyrene sulfonate)." Sanofi Winthrop Pharmaceuticals
  2. (2002) "Product Information. Resonium Calcium (calcium polystyrene sulfonate)." Sanofi-Synthelabo Canada Inc

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.