Drug Interactions between glasdegib and MKO Melt Dose Pack
This report displays the potential drug interactions for the following 2 drugs:
- glasdegib
- MKO Melt Dose Pack (ketamine/midazolam/ondansetron)
Interactions between your drugs
ketamine midazolam
Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron) and MKO Melt Dose Pack (ketamine / midazolam / ondansetron)
MONITOR CLOSELY: Coadministration of ketamine with other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. In addition, opioid analgesics, barbiturates, and benzodiazepines may prolong the time to complete recovery from anesthesia.
MANAGEMENT: During concomitant use of ketamine with other CNS depressants, including alcohol, close monitoring of neurologic status and respiratory parameters, including respiratory rate and pulse oximetry, is recommended. Dosage adjustments should be considered according to the patient's clinical situation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (3)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
ondansetron glasdegib
Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron) and glasdegib
GENERALLY AVOID: Glasdegib may cause dose-related prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. The effect of glasdegib administration on corrected QT interval (QTc) was evaluated in 36 healthy study subjects. At therapeutic plasma concentrations for the recommended dose, achieved with a single 150 mg dose, the largest placebo and baseline-adjusted QTc interval change was 8 msec. At twice the therapeutic plasma concentration, achieved with a single 300 mg dose, the QTc change was 13 msec. In a clinical trial that had 98 evaluable patients treated with glasdegib 100 mg in combination with low-dose cytarabine, 5% of patients were found to have a QTc interval greater than 500 msec and 4% had a QTc increase from baseline greater than 60 msec. The clinical trial excluded patients with baseline QTc greater than 470 msec or a history of long QT syndrome or uncontrolled cardiovascular disease. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).
MANAGEMENT: Coadministration of glasdegib with other drugs that can prolong the QT interval should generally be avoided. Caution and clinical monitoring are recommended if concomitant use is required. Patients should have electrocardiograms (ECGs) performed prior to initiation of treatment with glasdegib, approximately one week after initiation, and then once monthly for the next two months, although patients with risk factors may require more frequent and ongoing ECG monitoring. If QTc interval is greater than 500 msec at any time during treatment, interrupt and reduce glasdegib dosing in accordance with product labeling recommendations. Glasdegib should be permanently discontinued in patients who develop QTc interval prolongation with signs or symptoms of life-threatening arrhythmia. ECGs should be monitored at least weekly for 2 weeks upon the resolution of QTC prolongation to less than or equal to 480 msec. Because hypokalemia and hypomagnesemia are risk factors for ventricular arrhythmias, electrolyte levels should also be obtained prior to and during treatment, and any abnormalities corrected as necessary. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.
References (3)
- (2023) "Product Information. Daurismo (glasdegib)." Pfizer U.S. Pharmaceuticals Group
- (2022) "Product Information. Daurismo (glasdegib)." Pfizer Ltd
- (2022) "Product Information. Daurismo (glasdegib)." Pfizer Canada ULC
Drug and food interactions
ketamine food
Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron)
MONITOR CLOSELY: Coadministration of ketamine with other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. In addition, opioid analgesics, barbiturates, and benzodiazepines may prolong the time to complete recovery from anesthesia.
MANAGEMENT: During concomitant use of ketamine with other CNS depressants, including alcohol, close monitoring of neurologic status and respiratory parameters, including respiratory rate and pulse oximetry, is recommended. Dosage adjustments should be considered according to the patient's clinical situation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (3)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
ketamine food
Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron)
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of ketamine. Use in combination may result in additive central nervous system (CNS) depression and/or impairment of judgment, thinking, and psychomotor skills.
GENERALLY AVOID: Coadministration of oral ketamine with grapefruit juice may significantly increase the plasma concentrations of S(+) ketamine, the dextrorotatory enantiomer of ketamine. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. When a single 0.2 mg/kg dose of S(+) ketamine was administered orally on study day 5 with grapefruit juice (200 mL three times daily for 5 days) in 12 healthy volunteers, mean S(+) ketamine peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 2.1- and 3.0-fold, respectively, compared to administration with water. In addition, the elimination half-life of S(+) ketamine increased by 24% with grapefruit juice, and the ratio of the main metabolite norketamine to ketamine was decreased by 57%. The pharmacodynamics of ketamine were also altered by grapefruit juice. Specifically, self-rated relaxation was decreased and performance in the digit symbol substitution test was increased with grapefruit juice, but other behavioral or analgesic effects were not affected.
MANAGEMENT: Patients receiving ketamine should not drink alcohol. Caution is advised when ketamine is used in patients with acute alcohol intoxication or a history of chronic alcoholism. Following anesthesia with ketamine, patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination, such as driving or operating hazardous machinery, for at least 24 hours and until they know how the medication affects them. Patients treated with oral ketamine should also avoid consumption of grapefruit and grapefruit juice during treatment. Otherwise, dosage reductions of oral ketamine should be considered.
References (4)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2009) "Product Information. Ketalar (ketamine)." JHP Pharmaceuticals
- Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Neuvonen PJ, Olkkola KT (2012) "S-ketamine concentrations are greatly increased by grapefruit juice." Eur J Clin Pharmacol, 68, p. 979-86
midazolam food
Applies to: MKO Melt Dose Pack (ketamine / midazolam / ondansetron)
GENERALLY AVOID: The pharmacologic activity of oral midazolam, triazolam, and alprazolam may be increased if taken after drinking grapefruit juice. The proposed mechanism is CYP450 3A4 enzyme inhibition. In addition, acute alcohol ingestion may potentiate CNS depression and other CNS effects of many benzodiazepines. Tolerance may develop with chronic ethanol use. The mechanism may be decreased clearance of the benzodiazepines because of CYP450 hepatic enzyme inhibition. Also, it has been suggested that the cognitive deficits induced by benzodiazepines may be increased in patients who chronically consume large amounts of alcohol.
MANAGEMENT: The manufacturer recommends that grapefruit juice should not be taken with oral midazolam. Patients taking triazolam or alprazolam should be monitored for excessive sedation. Alternatively, the patient could consume orange juice which does not interact with these drugs. Patients should be advised to avoid alcohol during benzodiazepine therapy.
References (7)
- (2002) "Product Information. Xanax (alprazolam)." Pharmacia and Upjohn
- (2002) "Product Information. Valium (diazepam)." Roche Laboratories
- (2001) "Product Information. Halcion (triazolam)." Pharmacia and Upjohn
- (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
- Kupferschmidt HHT, Ha HR, Ziegler WH, Meier PJ, Krahenbuhl S (1995) "Interaction between grapefruit juice and midazolam in humans." Clin Pharmacol Ther, 58, p. 20-8
- Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
- Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
glasdegib food
Applies to: glasdegib
GENERALLY AVOID: Coadministration with grapefruit or grapefruit juice may increase the plasma concentrations of glasdegib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruit. When glasdegib was coadministered with ketoconazole, a potent CYP450 3A4 inhibitor, glasdegib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 1.4- and 2.4-fold, respectively, compared to administration of glasdegib alone. The interaction has not been studied with other, less potent CYP450 3A4 inhibitors. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.
When administered with a high-fat, high-calorie meal (800 to 1000 total calories, 500 to 600 fat calories, 250 carbohydrate calories, and 150 protein calories), glasdegib Cmax and AUC decreased by 31% and 16%, respectively.
MANAGEMENT: Glasdegib may be administered with or without food. Coadministration of grapefruit or grapefruit juice with glasdegib should preferably be avoided.
References (3)
- (2023) "Product Information. Daurismo (glasdegib)." Pfizer U.S. Pharmaceuticals Group
- (2022) "Product Information. Daurismo (glasdegib)." Pfizer Ltd
- (2022) "Product Information. Daurismo (glasdegib)." Pfizer Canada ULC
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.