Skip to main content

Drug Interactions between Gilenya and Timolide

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

timolol fingolimod

Applies to: Timolide (hydrochlorothiazide / timolol) and Gilenya (fingolimod)

MONITOR CLOSELY: The risk of severe bradycardia and atrioventricular (AV) block may be increased during initiation of fingolimod treatment in patients receiving other drugs that slow heart rate or AV conduction such as beta-blockers, certain calcium channel blockers (e.g., diltiazem, verapamil), and digitalis. Fingolimod can cause a decrease in heart rate during initiation of therapy that is apparent within an hour of the first dose and maximal at approximately 6 hours postdose in most cases, but occasionally up to 20 hours after the first dose. Further, but smaller decreases in heart rate may occur after the second dose, although heart rate eventually returns to baseline within one month of chronic treatment. The mean decrease in heart rate in patients receiving fingolimod 0.5 mg at 6 hours after the first dose was approximately 13 beats per minute (bpm). Heart rates below 40 bpm were rarely observed. In controlled clinical trials, adverse reactions of symptomatic bradycardia (hypotension, dizziness, fatigue, palpitations, chest pain) following the first dose were reported in 0.5% of patients receiving fingolimod 0.5 mg, compared to no patient on placebo. Initiation of fingolimod treatment has also resulted in transient AV conduction delays. First- and second-degree AV block (prolonged PR interval on ECG) following the first dose were each reported in 0.1% of patients receiving fingolimod 0.5 mg, compared to no patient on placebo. In a study of 698 patients with available 24-hour Holter monitoring data after their first dose, second degree AV blocks, usually Mobitz type I (Wenckebach), were reported in 3.7% of patients receiving fingolimod 0.5 mg and 2% of patients receiving placebo. Bradycardia and conduction abnormalities were usually transient and asymptomatic, and resolved within the first 24 hours on treatment, but they occasionally required treatment with atropine or isoproterenol.

MANAGEMENT: Fingolimod has not been adequately studied in patients receiving beta-blockers, calcium channel blockers, or digitalis. The possibility of switching to alternative agents that do not slow heart rate or AV conduction should be evaluated by the physician before initiating fingolimod. In patients who cannot switch, overnight continuous ECG monitoring after the first dose is recommended in accordance with the product labeling. The same precautions are applicable if, after the first month of treatment, fingolimod is discontinued for more than two weeks and then restarted, since the effects on heart rate and AV conduction may recur on reintroduction of fingolimod. Within the first 2 weeks of treatment, first-dose procedures are also recommended after interruption of one day or more; during week 3 and 4 of treatment, first-dose procedures are recommended after treatment interruption of more than 7 days. The first dose should always be administered in a setting where resources to appropriately manage symptomatic bradycardia are available.

References

  1. "Product Information. Gilenya (fingolimod)." Novartis Pharmaceuticals (2010):
  2. FDA. U.S. Food and Drug Administration "FDA Drug Safety Communication: Revised recommendations for cardiovascular monitoring and use of multiple sclerosis drug Gilenya (fingolimod). http://www.fda.gov/Drugs/DrugSafety/ucm303192.htm#data" (2012):

Switch to consumer interaction data

Moderate

timolol hydroCHLOROthiazide

Applies to: Timolide (hydrochlorothiazide / timolol) and Timolide (hydrochlorothiazide / timolol)

MONITOR: Although they are often combined in clinical practice, diuretics and beta-blockers may increase the risk of hyperglycemia and hypertriglyceridemia in some patients, especially in patients with diabetes or latent diabetes. In addition, the risk of QT interval prolongation and arrhythmias (e.g. torsades de pointes) due to sotalol may be increased by potassium-depleting diuretics.

MANAGEMENT: Monitoring of serum potassium levels, blood pressure, and blood glucose is recommended during coadministration. Patients should be advised to seek medical assistance if they experience dizziness, weakness, fainting, fast or irregular heartbeats, or loss of blood glucose control.

References

  1. Dornhorst A, Powell SH, Pensky J "Aggravation by propranolol of hyperglycaemic effect of hydrochlorothiazide in type II diabetics without alteration of insulin secretion." Lancet 1 (1985): 123-6
  2. Roux A, Le Liboux A, Delhotal B, Gaillot J, Flouvat B "Pharmacokinetics in man of acebutolol and hydrochlorothiazide as single agents and in combination." Eur J Clin Pharmacol 24 (1983): 801-6
  3. Dean S, Kendall MJ, Potter S, Thompson MH, Jackson DA "Nadolol in combination with indapamide and xipamide in resistant hypertensives." Eur J Clin Pharmacol 28 (1985): 29-33
  4. "Product Information. Lozol (indapamide)." Rhone Poulenc Rorer PROD (2002):
  5. Marcy TR, Ripley TL "Aldosterone antagonists in the treatment of heart failure." Am J Health Syst Pharm 63 (2006): 49-58
View all 5 references

Switch to consumer interaction data

Drug and food interactions

Moderate

timolol food

Applies to: Timolide (hydrochlorothiazide / timolol)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol 11 (1991): 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med 101 (1984): 498-9
  3. Feder R "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry 52 (1991): 139
  4. Ellison JM, Milofsky JE, Ely E "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry 51 (1990): 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit 23 (2001): 435-40
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. Pacher P, Kecskemeti V "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des 10 (2004): 2463-75
  8. Andrews C, Pinner G "Postural hypotension induced by paroxetine." BMJ 316 (1998): 595
View all 8 references

Switch to consumer interaction data

Moderate

hydroCHLOROthiazide food

Applies to: Timolide (hydrochlorothiazide / timolol)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol 11 (1991): 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med 101 (1984): 498-9
  3. Feder R "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry 52 (1991): 139
  4. Ellison JM, Milofsky JE, Ely E "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry 51 (1990): 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit 23 (2001): 435-40
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. Pacher P, Kecskemeti V "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des 10 (2004): 2463-75
  8. Andrews C, Pinner G "Postural hypotension induced by paroxetine." BMJ 316 (1998): 595
View all 8 references

Switch to consumer interaction data

Moderate

timolol food

Applies to: Timolide (hydrochlorothiazide / timolol)

ADJUST DOSING INTERVAL: Concurrent administration with calcium salts may decrease the oral bioavailability of atenolol and possibly other beta-blockers. The exact mechanism of interaction is unknown. In six healthy subjects, calcium 500 mg (as lactate, carbonate, and gluconate) reduced the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of atenolol (100 mg) by 51% and 32%, respectively. The elimination half-life increased by 44%. Twelve hours after the combination, beta-blocking activity (as indicated by inhibition of exercise tachycardia) was reduced compared to that with atenolol alone. However, during a 4-week treatment in six hypertensive patients, there was no difference in blood pressure values between treatments. The investigators suggest that prolongation of the elimination half-life induced by calcium coadministration may have led to atenolol cumulation during long-term dosing, which compensated for the reduced bioavailability.

MANAGEMENT: It may help to separate the administration times of beta-blockers and calcium products by at least 2 hours. Patients should be monitored for potentially diminished beta-blocking effects following the addition of calcium therapy.

References

  1. Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther 30 (1981): 429-35

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.