Drug Interactions between gepirone and lomefloxacin
This report displays the potential drug interactions for the following 2 drugs:
- gepirone
- lomefloxacin
Interactions between your drugs
lomefloxacin gepirone
Applies to: lomefloxacin and gepirone
MONITOR: Gepirone can cause prolongation of the QTc interval (QT interval corrected for heart rate). Coadministration with other agents that can prolong the QTc interval may result in additive effects and increased risk of ventricular arrhythmias. When immediate release gepirone (100 mg per day) was evaluated in a thorough QT study, the largest mean increase in baseline- and placebo-corrected QTc interval was 18.4 ms on Day 1 and 16.1 ms on Day 7. However, the exposure in this study was 2-fold the exposure of the maximum recommended dose of gepirone extended-release. Clinical data examining the QT prolonging effects of gepirone at recommended dosages are not available. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors including, but not limited to cardiac disease, uncontrolled hypothyroidism, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation may vary depending on the dosage(s) and specific drug(s) involved.
MANAGEMENT: Closer monitoring is advised if gepirone is used concurrently with other QT prolonging drugs. Electrolyte abnormalities should be corrected prior to gepirone initiation, electrocardiograms (ECGs) should be performed more frequently than normally recommended, and the dose of gepirone should not be escalated if the patient develops a QTcF (QT corrected for heart rate by Fridericia's cube root formula) greater than 450 msec during treatment. Electrolytes should also be monitored during dose titration and periodically during treatment with gepirone if the other QT prolonging drug(s) also carry a risk of causing electrolyte abnormalities. Patients and caregivers should be counseled about the signs and symptoms of prolonged QT interval (irregular heartbeat, dizziness, lightheadedness, fainting) and advised to seek immediate medical attention should they occur.
References (1)
- (2023) "Product Information. Exxua (gepirone)." Mission Pharmacal Company, 1
Drug and food/lifestyle interactions
gepirone food/lifestyle
Applies to: gepirone
GENERALLY AVOID: Grapefruit and/or grapefruit juice may increase the plasma concentrations and effects of gepirone. The proposed mechanism is inhibition of CYP450 3A4 mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. For example, when subjects who were at steady state on the strong CYP450 3A4 inhibitor ketoconazole (200 mg twice daily) received a single dose of gepirone (36.3 mg), the maximum plasma concentration (Cmax) and systemic exposure (AUC) of gepirone increased by approximately 5-fold. Similarly, when subjects who were at steady state on the moderate CYP450 3A4 inhibitor verapamil (80 mg three times daily) received a single dose of gepirone (18.2 mg), the maximum plasma concentration (Cmax) and systemic exposure (AUC) of gepirone increased by approximately 2.6-fold. In general, the effects of grapefruit products are concentration-, dose-, and preparation-dependent and can vary widely among both brands and individual patients. Some preparations have demonstrated strong CYP450 3A4 inhibition, while others have demonstrated moderate inhibition.
ADJUST DOSING INTERVAL: Food enhances the bioavailability of gepirone and its major active metabolites (3'-OH-gepirone and 1-PP). The magnitude of the effect is dependent on the fat content of the meal, but the systemic exposure of gepirone and its major metabolites was consistently higher under fed conditions as compared to the fasted state. The peak plasma concentration (Cmax) of gepirone after intake of a low-fat (about 200 calorie) breakfast was 27% higher, after a medium-fat (about 500 calorie) breakfast was 55% higher, and after a high-fat (about 850 calorie) breakfast was 62% higher than the Cmax achieved in the fasted state. Likewise, the systemic exposure (AUC) of gepirone was about 14% higher after a low-fat breakfast, 22% higher after a medium-fat breakfast, and 32% to 37% higher after a high-fat breakfast when compared to the AUC achieved in the fasted state. The effect of varying amounts of fat on the AUC and Cmax of 3'-OH-gepirone and 1-PP were similar to that of gepirone.
MANAGEMENT: Coadministration of gepirone with grapefruit products should be avoided. If grapefruit juice is consumed, monitoring for adverse effects (e.g., QT prolongation, serotonin syndrome, dizziness, nausea, insomnia, abdominal pain, and/or dyspepsia) should be considered. Gepirone should be taken orally with food at the approximately the same time each day. Tablets should be swallowed whole.
References (4)
- (2023) "Product Information. Exxua (gepirone)." Mission Pharmacal Company, 1
- FDA. U.S. Food and Drug Administration (2024) Grapefruit juice and some drugs don't mix. https://www.fda.gov/consumers/consumer-updates/grapefruit-juice-and-some-drugs-dont-mix
- Chen M, Zhou S, Fabriaga E, Zhang P, Zhou Q (2024) Food-drug interactions precipitated by fruit juices other than grapefruit juice: an update review. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326888/
- Kiani J, Imam SZ (2024) Medicinal importance of grapefruit juice and its interaction with various drugs. https://nutritionj.biomedcentral.com/articles/10.1186/1475-2891-6-33
lomefloxacin food/lifestyle
Applies to: lomefloxacin
GENERALLY AVOID: The oral bioavailability of quinolone and tetracycline antibiotics may be reduced by concurrent administration of preparations containing polyvalent cations such as aluminum, calcium, iron, magnesium, and zinc. Therapeutic failure may result. The proposed mechanism is chelation of quinolone and tetracycline antibiotics by di- and trivalent cations, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. Reduced gastrointestinal absorption of the cations should also be considered.
MANAGEMENT: Concomitant administration of oral quinolone and tetracycline antibiotics with preparations containing aluminum, calcium, iron, magnesium, and/or zinc salts should generally be avoided. Otherwise, the times of administration should be staggered by as much as possible to minimize the potential for interaction. Quinolones should typically be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation preparations, depending on the quinolone and formulation. Likewise, tetracyclines and polyvalent cation preparations should typically be administered 2 to 4 hours apart. The prescribing information for the antibiotic should be consulted for more specific dosing recommendations.
References (51)
- Polk RE, Helay DP, Sahai J, Drwal L, Racht E (1989) "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother, 33, p. 1841-4
- Nix DE, Watson WA, Lener ME, et al. (1989) "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther, 46, p. 700-5
- Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC (1990) "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother, 34, p. 931-3
- Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT (1992) "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother, 36, p. 830-2
- Yuk JH (1989) "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc, 262, p. 901
- Neuvonen PJ (1976) "Interactions with the absorption of tetracyclines." Drugs, 11, p. 45-54
- Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P (1989) "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother, 33, p. 1901-7
- Nguyen VX, Nix DE, Gillikin S, Schentag JJ (1989) "Effect of oral antacid administration on the pharmacokinetics of intravenous doxycycline." Antimicrob Agents Chemother, 33, p. 434-6
- Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW (1992) "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol, 33, p. 115-6
- Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ (1989) "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother, 33, p. 99-102
- Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A (1990) "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother, 34, p. 432-5
- Akerele JO, Okhamafe AO (1991) "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother, 28, p. 87-94
- Gothoni G, Neuvonen PJ, Mattila M, Hackman R (1972) "Iron-tetracycline interaction: effect of time interval between the drugs." Acta Med Scand, 191, p. 409-11
- Garty M, Hurwitz A (1980) "Effect of cimetidine and antacids on gastrointestinal absorption of tetracycline." Clin Pharmacol Ther, 28, p. 203-7
- Gotz VP, Ryerson GG (1986) "Evaluation of tetracycline on theophylline disposition in patients with chronic obstructive airways disease." Drug Intell Clin Pharm, 20, p. 694-6
- McCormack JP, Reid SE, Lawson LM (1990) "Theophylline toxicity induced by tetracycline." Clin Pharm, 9, p. 546-9
- D'Arcy PF, McElnay JC (1987) "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm, 21, p. 607-17
- Wadworth AN, Goa KL (1991) "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs, 42, p. 1018-60
- Shimada J, Shiba K, Oguma T, et al. (1992) "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother, 36, p. 1219-24
- Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
- Venho VM, Salonen RO, Mattila MJ (1978) "Modification of the pharmacokinetics of doxycycline in man by ferrous sulphate or charcoal." Eur J Clin Pharmacol, 14, p. 277-80
- (2002) "Product Information. Minocin (minocycline)." Lederle Laboratories
- Sahai J, Healy DP, Stotka J, Polk RE (1993) "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol, 35, p. 302-4
- (2001) "Product Information. Declomycin (demeclocycline)." Lederle Laboratories
- Lehto P, Kivisto KT (1994) "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother, 38, p. 248-51
- Noyes M, Polk RE (1988) "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med, 109, p. 168-9
- Grasela TH Jr, Schentag JJ, Sedman AJ, et al. (1989) "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother, 33, p. 615-7
- Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
- Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
- Lehto P, Kivisto KT (1994) "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther, 56, p. 477-82
- Bateman FJ (1970) "Effects of tetracyclines." Br Med J, 4, p. 802
- Neuvonen PJ, Gothoni G, Hackman R, Bjorksten K (1970) "Interference of iron with the absorption of tetracyclines in man." Br Med J, 4, p. 532-4
- Greenberger NJ (1971) "Absorption of tetracyclines: interference by iron." Ann Intern Med, 74, p. 792-3
- Neuvonen PJ, Penttila O (1974) "Effect of oral ferrous sulphate on the half-life of doxycycline in man." Eur J Clin Pharmacol, 7, p. 361-3
- Spivey JM, Cummings DM, Pierson NR (1996) "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy, 16, p. 314-6
- (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
- (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
- (2001) "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer
- (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
- Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother, 39 Suppl B, p. 93-7
- Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H (1997) "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother, 41, p. 1668-72
- Honig PK, Gillespie BK (1998) "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet, 35, p. 167-71
- Johnson RD, Dorr MB, Talbot GH, Caille G (1998) "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther, 20, p. 1149-58
- Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H (1999) "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother, 43, p. 1067-71
- Allen A, Vousden M, Porter A, Lewis A (1999) "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy, 45, p. 504-11
- Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S (2000) "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol, 49, p. 98-103
- (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
- (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
- (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
- (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
- (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.