Drug Interactions between gatifloxacin and lixisenatide
This report displays the potential drug interactions for the following 2 drugs:
- gatifloxacin
- lixisenatide
Interactions between your drugs
gatifloxacin lixisenatide
Applies to: gatifloxacin and lixisenatide
CONTRAINDICATED: Gatifloxacin may interfere with the therapeutic effects of insulin and other antidiabetic agents. The use of various quinolones has been associated with disturbances in blood glucose homeostasis possibly stemming from effects on pancreatic beta cell ATP-sensitive potassium channels that regulate insulin secretion. However, hypoglycemia and hyperglycemia have been reported more frequently with gatifloxacin than with other quinolones. Gatifloxacin-induced hypoglycemic episodes have generally occurred within the first 3 days of therapy and sometimes even after the first dose, while hyperglycemia usually occurred 4 to 10 days after initiation of therapy. Death has been reported in severe cases. Coadministration of gatifloxacin with sulfonylureas (most often glyburide) and/or other oral hypoglycemic agents has resulted in severe, refractory hypoglycemia and hypoglycemic coma. Elderly patients and patients with reduced renal function are particularly susceptible.
MANAGEMENT: The use of gatifloxacin is contraindicated in patients with diabetes mellitus. Other quinolones may be safer alternatives in such patients, although all quinolones should be used with caution. Blood glucose should be closely monitored whenever quinolones are prescribed to patients receiving insulin or other antidiabetic agents, especially if they are elderly or have renal impairment. Patients should learn to recognize the symptoms of hypoglycemia such as headache, dizziness, drowsiness, nervousness, confusion, tremor, hunger, weakness, perspiration, palpitation, and tachycardia. If hypo- or hyperglycemia occur during quinolone therapy, patients should initiate appropriate remedial therapy immediately, discontinue the antibiotic, and contact their physician.
References (27)
- (2001) "Product Information. Tequin (gatifloxacin)." Bristol-Myers Squibb
- Gajjar DA, LaCreta FP, Kollia GD, et al. (2000) "Effect of multiple-dose gatifloxacin or ciprofloxacin on glucose homeostasis and insulin production in patients with noninsulin-dependent diabetes mellitus maintained with diet and exercise." Pharmacotherapy, 20 (6 Pt 2), s76-86
- Roberge RJ, Kaplan R, Frank R, Fore C (2000) "Glyburide-ciprofloxacin interaction with resistant hypoglycemia." Ann Emerg Med, 36, p. 160-3
- Rubinstein E (2001) "History of quinolones and their side effects." Chemotherapy, 47 Suppl 3, p. 3-8
- Menzies DJ, Dorsainvil PA, Cunha BA, Johnson DH (2002) "Severe and persistent hypoglycemia due to gatifloxacin interaction with oral hypoglycemic agents." Am J Med, 113, p. 232-4
- Baker SE, Hangii MC (2002) "Possible gatifloxacin-induced hypoglycemia." Ann Pharmacother, 36, p. 1722-6
- (2003) "Hypoglycemia and hyperglycemia with fluoroquinolones." Med Lett Drugs Ther, 45, p. 64
- Donaldson AR, Vandiver JR, Finch CK (2004) "Possible gatifloxacin-induced hyperglycemia." Ann Pharmacother, 38, p. 602-5
- LeBlanc M, Belanger C, Cossette P (2004) "Severe and resistant hypoglycemia associated with concomitant gatifloxacin and glyburide therapy." Pharmacotherapy, 24, p. 926-31
- Biggs WS (2004) "Hypoglycemia and hyperglycemia associated with gatifloxacin use in elderly patients." J Am Board Fam Pract, 16, p. 455-7
- Gavin JR 3rd, Kubin R, Choudhri S, et al. (2004) "Moxifloxacin and glucose homeostasis: a pooled-analysis of the evidence from clinical and postmarketing studies." Drug Saf, 27, p. 671-86
- Saraya A, Yokokura M, Gonoi T, Seino S (2004) "Effects of fluoroquinolones on insulin secretion and beta-cell ATP-sensitive K(+) channels." Eur J Pharmacol, 497, p. 111-7
- Lin G, Hays DP, Spillane L (2004) "Refractory hypoglycemia from ciprofloxacin and glyburide interaction." J Toxicol Clin Toxicol, 42, p. 295-7
- Khovidhunkit W, Sunthornyothin S (2004) "Hypoglycemia, hyperglycemia, and gatifloxacin." Ann Intern Med, 141, p. 969
- Happe MR, Mulhall BP, Maydonovitch CL, Holtzmuller KC (2004) "Gatifloxacin-induced hyperglycemia." Ann Intern Med, 141, p. 968-9
- Greenberg AL, Decerbo M, Fan J (2005) "Gatifloxacin therapy associated with hypoglycemia." Clin Infect Dis, 40, p. 1210-1
- Blommel AL, Lutes RA (2005) "Severe hyperglycemia during renally adjusted gatifloxacin therapy." Ann Pharmacother, 39, p. 1349-52
- Brogan SE, Cahalan MK (2005) "Gatifloxacin as a possible cause of serious postoperative hypoglycemia." Anesth Analg, 101, p. 635-6
- Graumlich JF, Habis S, Avelino RR, et al. (2005) "Hypoglycemia in inpatients after gatifloxacin or levofloxacin therapy: nested case-control study." Pharmacotherapy, 25, p. 1296-302
- Frothingham R (2005) "Glucose homeostasis abnormalities associated with use of gatifloxacin." Clin Infect Dis, 41, p. 1269-76
- Bhasin R, Arce FC, Pasmantier R (2005) "Hypoglycemia associated with the use of gatifloxacin." Am J Med Sci, 330, p. 250-3
- McMorran M, Morrison H, Letourneau G (2006) Gatifloxacin (Tequin): hypoglycemia and hyperglycemia. http://www.hc-sc.gc.ca/dhp-mps/medeff/bulletin/carn-bcei_v13n3_e.html#1
- Park-Wyllie LY, Juurlink DN, Kopp A, et al. (2006) "Outpatient gatifloxacin therapy and dysglycemia in older adults." N Engl J Med, 354, p. 1352-61
- Zvonar R (2006) "Gatifloxacin-induced dysglycemia." Am J Health Syst Pharm, 63, p. 2087-2092
- Zhanel GG, Fontaine S, Adam H, et al. (2006) "A Review of New Fluoroquinolones : Focus on their Use in Respiratory Tract Infections." Treat Respir Med, 5, p. 437-465
- Yip C, Lee AJ (2006) "Gatifloxacin-induced hyperglycemia: a case report and summary of the current literature." Clin Ther, 28, p. 1857-66
- Tomita T, Onishi M, Sato E, Kimura Y, Kihira K (2007) "Gatifloxacin induces augmented insulin release and intracellular insulin." Biol Pharm Bull, 30, p. 644-7
Drug and food interactions
lixisenatide food
Applies to: lixisenatide
ADJUST DOSING INTERVAL: Lixisenatide slows gastric emptying, which may impact the absorption of concomitantly administered oral medications. The interaction has been studied with various medications, which demonstrated primarily an effect on the rate rather than the overall extent of absorption.
Acetaminophen: When acetaminophen 1000 mg was administered 1 hour and 4 hours after lixisenatide 10 mcg injection, acetaminophen peak plasma concentration (Cmax) was decreased by 29% and 31%, respectively; and median time to peak plasma concentration (Tmax) was delayed by 2 hours and 1.75 hours, respectively. The Cmax and Tmax of acetaminophen were not significantly altered when acetaminophen was given one hour before lixisenatide injection, and systemic exposure (AUC) was not affected whether administered before or after lixisenatide administration. Based on these results, no dose adjustment for acetaminophen is required; however, it may be advisable to take acetaminophen at least one hour before lixisenatide if a rapid onset of action is required.
Oral Contraceptives: When an oral contraceptive containing ethinyl estradiol 0.03 mg and levonorgestrel 0.15 mg was administered 1 hour and 4 hours after lixisenatide 10 mcg injection, ethinyl estradiol Cmax was decreased by 52% and 39%, respectively, while levonorgestrel Cmax was decreased by 46% and 20%, respectively. Median Tmax values were delayed by 1 to 3 hours, but overall exposure (AUC) and mean terminal half-life (T1/2) of ethinyl estradiol and levonorgestrel were not significantly altered. Administration of the oral contraceptive 1 hour before or 11 hours after lixisenatide had no effect on any of the measured pharmacokinetic parameters of either ethinyl estradiol or levonorgestrel. Based on these results, no dose adjustment for oral contraceptives is required; however, some authorities recommend that oral contraceptives be administered at least 1 hour before or 11 hours after lixisenatide.
Atorvastatin: When atorvastatin 40 mg and lixisenatide 20 mcg were coadministered in the morning for 6 days, atorvastatin Cmax was decreased by 31% and Tmax was delayed by 3.25 hours, but AUC was not affected. When atorvastatin was administered in the evening and lixisenatide in the morning, the AUC and Cmax of atorvastatin were increased by 27% and 66%, respectively, but there was no change in Tmax. Based on these results, no dose adjustment for atorvastatin is required; however, some authorities recommend that atorvastatin be administered at least 1 hour before lixisenatide.
Warfarin: When warfarin 25 mg was coadministered with repeated dosing of lixisenatide 20 mcg, warfarin Cmax was decreased by 19% and Tmax was delayed by 7 hours, but there were no effects on AUC or International Normalized Ratio (INR). Based on these results, no dose adjustment for warfarin is required; however, closer monitoring of INR may be appropriate following initiation or discontinuation of lixisenatide treatment.
Digoxin: When digoxin 0.25 mg and lixisenatide 20 mcg were coadministered at steady state, digoxin Cmax was decreased by 26% and Tmax was delayed by 1.5 hours, but AUC was not affected. Based on these results, no dose adjustment for digoxin is required.
Ramipril: When ramipril 5 mg and lixisenatide 20 mcg were coadministered for 6 days, ramipril Cmax was decreased by 63% and AUC was increased by 21%, while Cmax and AUC of the active metabolite (ramiprilat) were not affected. The Tmax values of ramipril and ramiprilat were delayed by approximately 2.5 hours. Based on these results, no dose adjustment for ramipril is required.
MANAGEMENT: Caution is advised during concomitant use of lixisenatide with oral medications that have a narrow therapeutic index or that require careful clinical monitoring. These medications should be administered on a consistent schedule relative to lixisenatide, and blood levels and/or pharmacologic effects should be closely monitored. In addition, if they are to be administered with food, patients should be advised to take them with a meal or snack when lixisenatide is not administered. Oral medications that are particularly dependent on threshold concentrations for efficacy, such as antibiotics, or medications for which a delay in effect is undesirable, such as acetaminophen, should be administered at least 1 hour before lixisenatide. Gastro-resistant formulations containing substances sensitive to stomach degradation should be administered 1 hour before or 4 hours after lixisenatide. Patients taking oral contraceptives should be advised to take them at least 1 hour before or 11 hours after lixisenatide.
References (1)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
gatifloxacin food
Applies to: gatifloxacin
Concurrent ingestion of calcium-fortified foods (i.e., cereal, orange juice) may alter the bioavailability of gatifloxacin. The mechanism is chelation of calcium and the quinolone, resulting in decreased bioavailability. In the case of orange juice, inhibition of intestinal transport mechanisms (P-glycoprotein or organic anion-transporting polypeptides) by flavones may also be involved. Data have been conflicting: One study has reported no effect with milk coadministration. Another study reported a modest decrease in gatifloxacin bioavailability (13.5% decrease in Cmax,12% decrease in AUC, 15% increase in total clearance) when taken with 12 ounces of calcium-fortified orange juice instead of water, which could be clinically significant if the infecting organisms have borderline susceptibilities. The manufacturer states that gatifloxacin may be taken without regard to food, milk, or calcium. Clinicians should be aware of the possibility of an interaction if subtherapeutic effects are observed.
References (2)
- (2001) "Product Information. Tequin (gatifloxacin)." Bristol-Myers Squibb
- Wallace AW, Victory JM, Amsden GW (2003) "Lack of bioequivalence of gatifloxacin when coadministered with calcium-fortified orange juice in healthy volunteers." J Clin Pharmacol, 43, p. 92-6
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.