Skip to main content

Drug Interactions between fluticasone / vilanterol and mavorixafor

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

fluticasone mavorixafor

Applies to: fluticasone / vilanterol and mavorixafor

MONITOR: Coadministration with mavorixafor may increase the plasma concentrations of drugs that are substrates of the isoenzyme CYP450 2D6, isoenzyme CYP450 3A4, and/or the efflux transporter P-glycoprotein (P-gp). It is important to determine if the isoenzyme in question is responsible for drug clearance or drug activation as these situations may result in either a potential increase in adverse effects or reduction in efficacy, respectively. When mavorixafor (400 mg) was used concurrently with the sensitive CYP450 2D6 substrate dextromethorphan in healthy subjects, dextromethorphan's peak plasma concentration (Cmax) and systemic exposure (AUC) increased by an average of 6- and 9-fold, respectively. On the other hand, when mavorixafor (400 mg) was used concurrently with the sensitive CYP450 3A4 substrate midazolam in healthy subjects, the Cmax and AUC increased by only 1.1- and 1.7-fold, respectively. Likewise, when a single dose of a transporter cocktail containing P-gp substrate digoxin (0.25 mg) was administered to healthy subjects on mavorixafor (400 mg/day at steady state), digoxin's Cmax and AUC increased by 1.5- and 1.6-fold, respectively. Data for less sensitive substrates or drugs metabolized and/or transported by multiple routes are unavailable.

MANAGEMENT: Caution is advised if mavorixafor is used concurrently with medications that are substrates of the P-gp efflux transporter and/or undergo metabolism via CYP450 2D6 and/or 3A4. This may be particularly important in cases where minimal concentration changes may result in serious adverse reactions from the substrate(s) in question. Dose adjustments and/or increased monitoring may be required. For example, digoxin's serum concentrations should be measured before initiating concomitant use with mavorixafor and as clinically indicated during coadministration. The labeling for the substrate(s) in question should be consulted for more specific recommendations.

References (1)
  1. (2024) "Product Information. Xolremdi (mavorixafor)." X4 Pharmaceuticals, Inc.
Moderate

vilanterol mavorixafor

Applies to: fluticasone / vilanterol and mavorixafor

MONITOR: Beta-2 adrenergic agonists can cause dose-related prolongation of the QT interval and potassium loss. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s). Clinically significant prolongation of QT interval and hypokalemia occur infrequently when beta-2 agonists are inhaled at normally recommended dosages. However, these effects may be more common when the drugs are administered systemically or when recommended dosages are exceeded.

MANAGEMENT: Caution is recommended if beta-2 agonists are used in combination with other drugs that can prolong the QT interval. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References (30)
  1. Whyte KF, Addis GJ, Whitesmith R, Reid JL (1987) "The mechanism of salbutamol-induced hypokalaemia." Br J Clin Pharmacol, 23, p. 65-71
  2. Larsson S, Svedmyr N (1977) "Bronchodilating effect and side effects of beta2- adrenoceptor stimulants by different modes of administration (tablets, metered aerosol, and combinations thereof). A study with salbutamol inasthmatics." Am Rev Respir Dis, 116, p. 861-9
  3. Hastwell G, Lambert BE (1978) "The effect of oral salbutamol on serum potassium and blood sugar." Br J Obstet Gynaecol, 85, p. 767-9
  4. (1981) "Hypokalaemia due to salbutamol overdosage." Br Med J (Clin Res Ed), 283, p. 500-1
  5. Kantola I, Tarssanen L (1986) "Hypokalemia from usual salbutamol dosage ." Chest, 89, p. 619-20
  6. Wong CS, Pavord ID, Williams J, Britton JR, Tattersfield AE (1990) "Bronchodilator, cardiovascular, and hypokalaemic effects of fenoterol, salbutamol, and terbutaline in asthma." Lancet, 336, p. 1396-9
  7. Gross TL, Sokol RJ (1980) "Severe hypokalemia and acidosis: a potential complication of beta- adrenergic treatment." Am J Obstet Gynecol, 138, p. 1225-6
  8. Clifton GD, Hunt BA, Patel RC, Burki NK (1990) "Effects of sequential doses of parenteral terbutaline on plasma levels of potassium and related cardiopulmonary responses." Am Rev Respir Dis, 141, p. 575-9
  9. Hurlbert BJ, Edelman JD, David K (1981) "Serum potassium levels during and after terbutaline." Anesth Analg, 60, p. 723-5
  10. Bengtsson B, Fagerstrom PO (1982) "Extrapulmonary effects of terbutaline during prolonged administration." Clin Pharmacol Ther, 31, p. 726-32
  11. Gelmont DM, Balmes JR, Yee A (1988) "Hypokalemia induced by inhaled bronchodilators." Chest, 94, p. 763-6
  12. Sanders JP, Potter DE, Ellis S, Bee DE, Grant JA (1977) "Metabolic and cardiovascular effects of carbuterol and metaproterenol." J Allergy Clin Immunol, 60, p. 174-9
  13. (2002) "Product Information. Proventil (albuterol)." Schering Corporation
  14. Windom H, Grainger J, Burgess C, Crane J, Pearce N, Beasley R (1990) "A comparison of the haemodynamic and hypokalaemic effects of inhaled pirbuterol and salbutamol." N Z Med J, 103, p. 259-61
  15. "Product Information. Serevent (salmeterol)." Glaxo Wellcome
  16. (2001) "Product Information. Maxair (pirbuterol)." 3M Pharmaceuticals
  17. Dickens GR, Mccoy RA, West R, Stapczynski JS, Clifton GD (1994) "Effect of nebulized albuterol on serum potassium and cardiac rhythm in patients with asthma or chronic obstructive pulmonary disease." Pharmacotherapy, 14, p. 729-33
  18. Tveskov C, Djurhuus MS, Klitgaard NAH, Egstrup K (1994) "Potassium and magnesium distribution, ECG changes, and ventricular ectopic beats during beta(2)-adrenergic stimulation with terbutaline in healthy subjects." Chest, 106, p. 1654-9
  19. Braden GL, vonOeyen PT, Germain MJ, Watson DJ, Haag BL (1997) "Ritodrine- and terbutaline-induced hypokalemia in preterm labor: Mechanisms and consequences." Kidney Int, 51, p. 1867-75
  20. Rakhmanina NY, Kearns GL, Farrar HC (1998) "Hypokalemia in an asthmatic child from abuse of albuterol metered dose inhaler." Pediatr Emerg Care, 14, p. 145-7
  21. (2001) "Product Information. Xopenex (levalbuterol)." Sepracor Inc
  22. (2001) "Product Information. Foradil (formoterol)." Novartis Pharmaceuticals
  23. Ferguson GT, Funck-Brentano C, Fischer T, Darken P, Reisner C (2003) "Cardiovascular Safety of Salmeterol in COPD." Chest, 123, p. 1817-24
  24. Milic M, Bao X, Rizos D, Liu F, Ziegler MG (2006) "Literature review and pilot studies of the effect of qt correction formulas on reported beta(2)-agonist-induced QTc prolongation." Clin Ther, 28, p. 582-90
  25. (2006) "Product Information. Brovana (arformoterol)." Sepracor Inc
  26. Lowe MD, Rowland E, Brown MJ, Grace AA (2001) "Beta(2) adrenergic receptors mediate important electrophysiological effects in human ventricular myocardium." Heart, 86, p. 45-51
  27. Sun ZH, Swan H, Vitasalo M, Toivonen L (1998) "Effects of epinephrine and phenylephrine on QT interval dispersion in congenital long QT syndrome." J Am Coll Cardiol, 31, p. 1400-5
  28. (2011) "Product Information. Arcapta Neohaler (indacaterol)." Novartis Pharmaceuticals
  29. (2013) "Product Information. Breo Ellipta (fluticasone-vilanterol)." GlaxoSmithKline
  30. (2014) "Product Information. Striverdi Respimat (olodaterol)." Boehringer Ingelheim
Minor

fluticasone vilanterol

Applies to: fluticasone / vilanterol and fluticasone / vilanterol

Although they are often combined in clinical practice, the concomitant use of beta-2 adrenergic agonists and corticosteroids may result in additive hypokalemic effects. Since beta-2 agonists can sometimes cause QT interval prolongation, the development of hypokalemia may potentiate the risk of ventricular arrhythmias including torsade de pointes. However, clinical data are limited, and the potential significance is unknown. Patients who are receiving systemic or nebulized formulations of beta-2 agonists, high dosages of inhaled beta-2 agonists, or systemic corticosteroid therapy may be at a greater risk of developing hypokalemia.

References (4)
  1. (2001) "Product Information. Foradil (formoterol)." Novartis Pharmaceuticals
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia Española de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de información online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html

Drug and food interactions

Major

mavorixafor food

Applies to: mavorixafor

GENERALLY AVOID: Grapefruit products may significantly increase the plasma concentrations and effects of mavorixafor, which is primarily metabolized by the isoenzyme CYP450 3A4. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. A study examining mavorixafor in combination with the strong CYP450 3A4 and P-glycoprotein inhibitor, itraconazole, suggests an increase in mavorixafor's systemic exposure (AUC) of approximately 2-fold. Clinical data with grapefruit products are not available. Pharmacokinetic interactions involving grapefruit are subject to a high degree of interpatient variability and can also be affected by the product and amount consumed; therefore, the extent to which a given patient may be affected is difficult to predict. Additionally, since mavorixafor is associated with concentration-dependent prolongation of the QT interval, increased levels may potentiate the risk of ventricular arrhythmias such as torsade de pointes and sudden death.

ADJUST DOSING INTERVAL: Food may significantly reduce the peak plasma concentration (Cmax) and systemic exposure (AUC) of mavorixafor. When a single-dose of mavorixafor (400 mg) was administered with a high-fat meal (1000 calories, 50% fat) to healthy subjects, the Cmax and AUC decreased by 66% and 55%, respectively. Similarly, when the same dose was given with a low-fat meal (500 calories, 25% fat) to healthy subjects, mavorixafor's Cmax and AUC decreased by 55% and 51%, respectively. Additionally, a single dose of mavorixafor (400 mg) administered with a low-fat meal to healthy subjects following an overnight fast resulted in a 14% higher Cmax and an 18% lower AUC than those obtained from subjects who fasted for an additional 4 hours after the dose.

MANAGEMENT: Mavorixafor should be taken on an empty stomach after an overnight fast, 30 minutes before food. Patients should be advised to avoid eating or drinking products containing grapefruit, as this could increase the risk of experiencing adverse effects from mavorixafor such as QT prolongation.

References (1)
  1. (2024) "Product Information. Xolremdi (mavorixafor)." X4 Pharmaceuticals, Inc.

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.