Drug Interactions between FloLipid and isoniazid
This report displays the potential drug interactions for the following 2 drugs:
- FloLipid (simvastatin)
- isoniazid
Interactions between your drugs
isoniazid simvastatin
Applies to: isoniazid and FloLipid (simvastatin)
MONITOR: The risk of peripheral neuropathy may be increased during concurrent use of two or more agents that are associated with this adverse effect. Patient risk factors include diabetes and age older than 60 years. In some cases, the neuropathy may progress or become irreversible despite discontinuation of the medications.
MANAGEMENT: Caution is advised during concomitant use of agents with neurotoxic effects. Patients should be monitored closely for symptoms of neuropathy such as burning, tingling, pain, or numbness in the hands and feet. Since the development of peripheral neuropathy may be dose-related for many drugs, the recommended dosages should generally not be exceeded. Consideration should be given to dosage reduction or immediate discontinuation of these medications in patients who develop peripheral neuropathy to limit further damage. If feasible, therapy should generally be reinstituted only after resolution of neuropathy symptoms or return of symptoms to baseline status. In some cases, permanent dosage reductions may be required.
References (4)
- Carrion C, Espinosa E, Herrero A, Garcia B (1995) "Possible vincristine-isoniazid interaction." Ann Pharmacother, 29, p. 201
- Argov Z, Mastaglia FL (1979) "Drug-induced peripheral neuropathies." Br Med J, 1, p. 663-6
- Pharmaceutical Society of Australia (2006) APPGuide online. Australian prescription products guide online. http://www.appco.com.au/appguide/default.asp
- EMEA. European Medicines Agency (2007) EPARs. European Union Public Assessment Reports. http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landingpage.jsp&mid
Drug and food interactions
simvastatin food
Applies to: FloLipid (simvastatin)
GENERALLY AVOID: Coadministration with grapefruit juice may significantly increase the plasma concentrations of lovastatin and simvastatin and their active acid metabolites. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. When a single 60 mg dose of simvastatin was coadministered with 200 mL of double-strength grapefruit juice three times a day, simvastatin systemic exposure (AUC) increased by 16-fold and simvastatin acid AUC increased by 7-fold. Administration of a single 20 mg dose of simvastatin with 8 ounces of single-strength grapefruit juice increased the AUC of simvastatin and simvastatin acid by 1.9-fold and 1.3-fold, respectively. The interaction has also been reported with lovastatin, which has a similar metabolic profile to simvastatin. Clinically, high levels of HMG-CoA reductase inhibitory activity in plasma is associated with an increased risk of musculoskeletal toxicity. Myopathy manifested as muscle pain and/or weakness associated with grossly elevated creatine kinase exceeding ten times the upper limit of normal has been reported occasionally. Rhabdomyolysis has also occurred rarely, which may be accompanied by acute renal failure secondary to myoglobinuria and may result in death.
ADJUST DOSING INTERVAL: Fibres such as oat bran and pectin may diminish the pharmacologic effects of HMG-CoA reductase inhibitors by interfering with their absorption from the gastrointestinal tract.
Coadministration with green tea may increase the plasma concentrations of simvastatin. The mechanism of interaction has not been established, but may involve inhibition of organic anion transporting polypeptide (OATP) 1B1- and/or 2B1-mediated hepatic uptake of simvastatin by catechins in green tea. The interaction was suspected in a 61-year-old man who experienced muscle intolerance during treatment with simvastatin while drinking an average of 3 cups of green tea daily. He also experienced similar muscle intolerance (leg cramps without creatine phosphokinase elevation) during treatments with atorvastatin and rosuvastatin while drinking green tea. Pharmacokinetic studies performed during his usual green tea intake demonstrated an approximately two-fold higher exposure to simvastatin lactone (the administered form of simvastatin) than that observed after stopping green tea intake for a month. He was also able to tolerate simvastatin after discontinuing green tea consumption. The authors of the report subsequently conducted two independent studies to assess the effect of different green tea preparations on simvastatin pharmacokinetics. One study was conducted in 12 Italian subjects and the other in 12 Japanese subjects. In the Italian study, administration of a single 20 mg dose of simvastatin following pretreatment with 200 mL of a hot green tea standardized infusion 3 times daily for 14 days (estimated daily intake of 335 mg total catechins and 173 mg epigallocatechin-3-gallate (EGCG), the most abundant and biologically active catechin in green tea) was found to have no significant effect on mean peak plasma concentration (Cmax) or systemic exposure (AUC) of simvastatin lactone and simvastatin acid relative to administration with water. However, green tea increased simvastatin lactone AUC (0-6h) by about two-fold in 3 of the study subjects. In the Japanese study, administration of a single 10 mg dose of simvastatin following pretreatment with 350 mL of a commercial green tea beverage twice daily for 14 days (estimated daily intake of 638 mg total catechins and 322 mg EGCG) did not affect mean simvastatin lactone Cmax or AUC to a statistically significant extent compared to administration with water, but increased mean simvastatin acid Cmax and AUC by 42% and 22%, respectively. Similar to the first study, green tea increased simvastatin lactone AUC (0-6h) by two- to three-fold in 4 of the study subjects. Although not studied, the interaction may also occur with lovastatin due to its similar metabolic profile to simvastatin.
MANAGEMENT: Patients receiving therapy with lovastatin, simvastatin, or red yeast rice (which contains lovastatin) should be advised to avoid the consumption of grapefruit and grapefruit juice. Fluvastatin, pravastatin, pitavastatin, and rosuvastatin are metabolized by other enzymes and may be preferable alternatives in some individuals. All patients receiving statin therapy should be advised to promptly report any unexplained muscle pain, tenderness or weakness, particularly if accompanied by fever, malaise and/or dark colored urine. Therapy should be discontinued if creatine kinase is markedly elevated in the absence of strenuous exercise or if myopathy is otherwise suspected or diagnosed. Also, patients should either refrain from the use of oat bran and pectin, or separate the administration times by at least 2 to 4 hours if concurrent use cannot be avoided. Caution may be advisable when coadministered with green tea or green tea extracts. Dosing reduction of the statin and/or limiting consumption of green tea and green tea products may be required if an interaction is suspected.
References (12)
- Richter WO, Jacob BG, Schwandt P (1991) "Interaction between fibre and lovastatin." Lancet, 338, p. 706
- (2002) "Product Information. Mevacor (lovastatin)." Merck & Co., Inc
- (2001) "Product Information. Zocor (simvastatin)." Merck & Co., Inc
- Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
- Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
- Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
- Thompson PD, Clarkson P, Karas RH (2003) "Statin-associated myopathy." JAMA, 289, p. 1681-90
- Neuvonen PJ, Backman JT, Niemi M (2008) "Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin." Clin Pharmacokinet, 47, p. 463-74
- Werba JP, Giroli M, Cavalca V, Nava MC, Tremoli E, Dal Bo L (2008) "The effect of green tea on simvastatin tolerability." Ann Intern Med, 149, p. 286-7
- Werba JP, Misaka S, Giroli MG, et al. (2014) "Overview of Green Tea Interaction with Cardiovascular Drugs." Curr Pharm Des
- Roth M, Timmermann BN, Hagenbuch B (2011) "Interactions of green tea catechins with organic anion-transporting polypeptides." Drug Metab Dispos, 39, p. 920-6
- Knop J, Misaka S, Singer K, et al. (2015) "Inhibitory effects of green tea and (-)-epigallocatechin gallate on transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-glycoprotein." PLoS One, 10, e0139370
isoniazid food
Applies to: isoniazid
GENERALLY AVOID: Concurrent use of isoniazid (INH) in patients who ingest alcohol daily may result in an increased incidence of both hepatotoxicity and peripheral neuropathy. The increase in hepatotoxicity may be due to an additive risk as both alcohol and INH are individually associated with this adverse reaction. INH-associated hepatotoxicity is believed to be due to an accumulation of toxic metabolites and may also be partly immune mediated, though the exact mechanisms are not universally agreed upon. INH is metabolized by N-acetyltransferase and CYP450 2E1. The rate of acetylation is genetically determined and generally classified as slow or rapid. Slow acetylators have been identified by some studies as having a higher risk of hepatotoxicity; therefore, this interaction may be more significant for patients who fall into this category. Other studies have postulated that alcohol-mediated CYP450 2E1 induction may play a role, as this isoenzyme is involved in INH metabolism and may be responsible for producing hepatotoxic metabolites. However, available literature is conflicting. The labeling for some INH products lists daily alcohol use or chronic alcoholism as a risk factor for hepatitis, but not all studies have found a significant association between alcohol use and INH-induced hepatotoxicity. Additionally, INH and alcohol are both associated with pyridoxine (B6) deficiency, which may increase the risk of peripheral neuropathy.
GENERALLY AVOID: Concomitant administration of isoniazid (INH) with foods containing tyramine and/or histamine may increase the risk of symptoms relating to tyramine- and/or histamine toxicity (e.g., headache, diaphoresis, flushing, palpitations, and hypotension). The proposed mechanism is INH-mediated inhibition of monoamine oxidase (MAO) and diamine oxidase (DAO), enzymes responsible for the metabolism of tyramine and histamine, respectively. Some authors have suggested that the reactions observed are mainly due to INH's effects on DAO instead of MAO or the amounts of histamine instead of tyramine present in the food. A Japanese case report recorded an example in 8 out of 25 patients on the tuberculosis ward who developed an accidental histamine poisoning after ingesting a fish paste (saury). Patients developed allergy-like symptoms, which started between 20 minutes and 2 hours after ingesting the food. A high-level of histamine (32 mg/100 g of fish) was confirmed in the saury paste and all 8 patients were both on INH and had reduced MAO concentrations. The 17 remaining patients were not on INH (n=5) or reported not eating the saury paste (n=12).
ADJUST DOSING INTERVAL: Administration with food significantly reduces oral isoniazid (INH) absorption, increasing the risk of therapeutic failure or resistance. The mechanism is unknown. Pharmacokinetic studies completed in both healthy volunteers (n=14) and tuberculosis patients (n=20 treatment-naive patients during days 1 to 3 of treatment) have resulted in almost doubling the time to reach INH's maximum concentration (tmax) and a reduction in isoniazid's maximum concentration (Cmax) of 42%-51% in patients who consumed high-fat or high-carbohydrate meals prior to INH treatment.
MANAGEMENT: The manufacturer of oral forms of isoniazid (INH) recommends administration on an empty stomach (i.e., 30 minutes before or 2 hours after meals). Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and INH concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with INH. Concomitant pyridoxine (B6) administration is also recommended to reduce the risk of peripheral neuropathy, with some authorities suggesting a dose of at least 10 mg/day. Patients should be advised to avoid foods containing tyramine (e.g., aged cheese, cured meats such as sausages and salami, fava beans, sauerkraut, soy sauce, beer, or red wine) or histamine (e.g., skipjack, tuna, mackerel, salmon) during treatment with isoniazid. Consultation of product labeling for combination products containing isoniazid and/or relevant guidelines may be helpful for more specific recommendations.
References (17)
- Smith CK, Durack DT (1978) "Isoniazid and reaction to cheese." Ann Intern Med, 88, p. 520-1
- Dimartini A (1995) "Isoniazid, tricyclics and the ''cheese reaction''." Int Clin Psychopharmacol, 10, p. 197-8
- Uragoda CG, Kottegoda SR (1977) "Adverse reactions to isoniazid on ingestion of fish with a high histamine content." Tubercle, 58, p. 83-9
- Self TH, Chrisman CR, Baciewicz AM, Bronze MS (1999) "Isoniazid drug and food interactions." Am J Med Sci, 317, p. 304-11
- (2021) "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India), 2
- (2023) "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC.
- (2023) "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd
- (2023) "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB
- Saukkonen JJ, Cohn DL, Jasmer RM, et al. (2006) "An official ATS statement: hepatotoxicity of antituberculosis therapy." Am J Respir Crit Care Med, 174, p. 935-52
- Bouazzi OE, Hammi S, Bourkadi JE, et al. (2024) First line anti-tuberculosis induced hepatotoxicity: incidence and risk factors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326068/
- Wang P, Pradhan K, Zhong XB, Ma X (2016) "Isoniazid metabolism and hepatoxicity." Acta Pharm Sin B, 6, p. 384-92
- Saktiawati AM, Sturkenboom MG, Stienstra Y, et al. (2016) "Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment naive TB patients: a randomized cross-over trial." J Antimicrob Chemother, 71, p. 703-10
- Hahn JA, Ngabirano C, Fatch R, et al. (2023) "Safety and tolerability of isoniazid preventive therapy for tuberculosis for persons with HIV with and without alcohol use." AIDS, 37, p. 1535-43
- Huang YS, Chern HD, Su WJ, et al. (2003) "Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis." Hepatology, 37, p. 924-30
- Sousou JM, Griffith EM, Marsalisi C, Reddy P (2024) Pyridoxine deficiency and neurologic dysfunction: an unlikely association. https://www.cureus.com/articles/188310-pyridoxine-deficiency-and-neurologic-dysfunction-an-unlikely-association?score_article=true#!/
- Miki M, Ishikawa T, Okayama H (2005) "An outbreak of histamine poisoning after ingestion of the ground saury paste in eight patients taking isoniazid in tuberculous ward." Intern Med, 44, p. 1133-6
- (2021) "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc.
simvastatin food
Applies to: FloLipid (simvastatin)
MONITOR: Concomitant use of statin medication with substantial quantities of alcohol may increase the risk of hepatic injury. Transient increases in serum transaminases have been reported with statin use and while these increases generally resolve or improve with continued therapy or a brief interruption in therapy, there have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins. Patients who consume substantial quantities of alcohol and/or have a history of liver disease may be at increased risk for hepatic injury. Active liver disease or unexplained transaminase elevations are contraindications to statin use.
MANAGEMENT: Patients should be counseled to avoid substantial quantities of alcohol in combination with statin medications and clinicians should be aware of the increased risk for hepatotoxicity in these patients.
References (9)
- (2001) "Product Information. Pravachol (pravastatin)." Bristol-Myers Squibb
- (2001) "Product Information. Zocor (simvastatin)." Merck & Co., Inc
- (2001) "Product Information. Lescol (fluvastatin)." Novartis Pharmaceuticals
- (2001) "Product Information. Lipitor (atorvastatin)." Parke-Davis
- (2002) "Product Information. Altocor (lovastatin)." Andrx Pharmaceuticals
- (2003) "Product Information. Crestor (rosuvastatin)." AstraZeneca Pharma Inc
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2010) "Product Information. Livalo (pitavastatin)." Kowa Pharmaceuticals America (formerly ProEthic)
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.