Drug Interactions between Fioricet and mavorixafor
This report displays the potential drug interactions for the following 2 drugs:
- Fioricet (acetaminophen/butalbital/caffeine)
- mavorixafor
Interactions between your drugs
acetaminophen butalbital
Applies to: Fioricet (acetaminophen / butalbital / caffeine) and Fioricet (acetaminophen / butalbital / caffeine)
MONITOR: Barbiturates may increase the hepatotoxic potential of acetaminophen and decrease its therapeutic effects. The mechanism may be related to accelerated CYP450 metabolism of acetaminophen with consequent increase in hepatotoxic metabolites. This interaction is of greatest concern in cases of acetaminophen overdose.
MANAGEMENT: Monitoring for altered efficacy and safety is recommended. Prolonged use or high doses of acetaminophen should be avoided by patients on barbiturate therapy.
References (4)
- Pirotte JH (1984) "Apparent potentiation by phenobarbital of hepatotoxicity from small doses of acetaminophen." Ann Intern Med, 101, p. 403
- Douidar SM, Ahmed AE (1987) "A novel mechanism for the enhancement of acetaminophen hepatotoxicity by phenobarbital." J Pharmacol Exp Ther, 240, p. 578-83
- Wright N, Prescott LF (1973) "Potentiation by previous drug therapy of hepatotoxicity following paracetamol overdose." Scott Med J, 18, p. 56-8
- Bock KW, Wiltfang J, Blume R, Ullrich D, Bircher J (1987) "Paracetamol as a test drug to determine glucuronide formation in man: effects of inducers and of smoking." Eur J Clin Pharmacol, 31, p. 677-83
acetaminophen mavorixafor
Applies to: Fioricet (acetaminophen / butalbital / caffeine) and mavorixafor
MONITOR: Coadministration with mavorixafor may increase the plasma concentrations of drugs that are substrates of the isoenzyme CYP450 2D6, isoenzyme CYP450 3A4, and/or the efflux transporter P-glycoprotein (P-gp). It is important to determine if the isoenzyme in question is responsible for drug clearance or drug activation as these situations may result in either a potential increase in adverse effects or reduction in efficacy, respectively. When mavorixafor (400 mg) was used concurrently with the sensitive CYP450 2D6 substrate dextromethorphan in healthy subjects, dextromethorphan's peak plasma concentration (Cmax) and systemic exposure (AUC) increased by an average of 6- and 9-fold, respectively. On the other hand, when mavorixafor (400 mg) was used concurrently with the sensitive CYP450 3A4 substrate midazolam in healthy subjects, the Cmax and AUC increased by only 1.1- and 1.7-fold, respectively. Likewise, when a single dose of a transporter cocktail containing P-gp substrate digoxin (0.25 mg) was administered to healthy subjects on mavorixafor (400 mg/day at steady state), digoxin's Cmax and AUC increased by 1.5- and 1.6-fold, respectively. Data for less sensitive substrates or drugs metabolized and/or transported by multiple routes are unavailable.
MANAGEMENT: Caution is advised if mavorixafor is used concurrently with medications that are substrates of the P-gp efflux transporter and/or undergo metabolism via CYP450 2D6 and/or 3A4. This may be particularly important in cases where minimal concentration changes may result in serious adverse reactions from the substrate(s) in question. Dose adjustments and/or increased monitoring may be required. For example, digoxin's serum concentrations should be measured before initiating concomitant use with mavorixafor and as clinically indicated during coadministration. The labeling for the substrate(s) in question should be consulted for more specific recommendations.
References (1)
- (2024) "Product Information. Xolremdi (mavorixafor)." X4 Pharmaceuticals, Inc.
Drug and food interactions
mavorixafor food
Applies to: mavorixafor
GENERALLY AVOID: Grapefruit products may significantly increase the plasma concentrations and effects of mavorixafor, which is primarily metabolized by the isoenzyme CYP450 3A4. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. A study examining mavorixafor in combination with the strong CYP450 3A4 and P-glycoprotein inhibitor, itraconazole, suggests an increase in mavorixafor's systemic exposure (AUC) of approximately 2-fold. Clinical data with grapefruit products are not available. Pharmacokinetic interactions involving grapefruit are subject to a high degree of interpatient variability and can also be affected by the product and amount consumed; therefore, the extent to which a given patient may be affected is difficult to predict. Additionally, since mavorixafor is associated with concentration-dependent prolongation of the QT interval, increased levels may potentiate the risk of ventricular arrhythmias such as torsade de pointes and sudden death.
ADJUST DOSING INTERVAL: Food may significantly reduce the peak plasma concentration (Cmax) and systemic exposure (AUC) of mavorixafor. When a single-dose of mavorixafor (400 mg) was administered with a high-fat meal (1000 calories, 50% fat) to healthy subjects, the Cmax and AUC decreased by 66% and 55%, respectively. Similarly, when the same dose was given with a low-fat meal (500 calories, 25% fat) to healthy subjects, mavorixafor's Cmax and AUC decreased by 55% and 51%, respectively. Additionally, a single dose of mavorixafor (400 mg) administered with a low-fat meal to healthy subjects following an overnight fast resulted in a 14% higher Cmax and an 18% lower AUC than those obtained from subjects who fasted for an additional 4 hours after the dose.
MANAGEMENT: Mavorixafor should be taken on an empty stomach after an overnight fast, 30 minutes before food. Patients should be advised to avoid eating or drinking products containing grapefruit, as this could increase the risk of experiencing adverse effects from mavorixafor such as QT prolongation.
References (1)
- (2024) "Product Information. Xolremdi (mavorixafor)." X4 Pharmaceuticals, Inc.
acetaminophen food
Applies to: Fioricet (acetaminophen / butalbital / caffeine)
GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.
MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).
References (12)
- Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
- O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
- Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
- Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
- McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
- Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
- Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
- (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
- Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
- Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
butalbital food
Applies to: Fioricet (acetaminophen / butalbital / caffeine)
GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.
MANAGEMENT: The combination of ethanol and barbiturates should be avoided.
References (5)
- Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
- Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
- Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
- Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
- Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102
acetaminophen food
Applies to: Fioricet (acetaminophen / butalbital / caffeine)
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
caffeine food
Applies to: Fioricet (acetaminophen / butalbital / caffeine)
The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.
References (2)
- (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
- Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR (1996) "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy, 16, p. 1046-52
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.