Skip to main content

Drug Interactions between fedratinib and NutriDox Convenience Kit

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

omega-3 polyunsaturated fatty acids fedratinib

Applies to: NutriDox Convenience Kit (doxycycline / omega-3 polyunsaturated fatty acids) and fedratinib

MONITOR: Omega-3 fatty acids (e.g., fish oil) may potentiate the pharmacologic effects of anticoagulants and other drugs that affect hemostasis such as platelet inhibitors, thrombin inhibitors, thrombolytic agents, dextran, and nonsteroidal anti-inflammatory drugs (NSAIDs). The exact mechanism of interaction is unknown. Omega-3 fatty acids may possess mild antiplatelet and hypocoagulant activities. In some studies, these substances have been shown to reduce thrombin generation and plasma levels of fibrinogen, prothrombin, and coagulation factors V, VII, and X. Prolongation of bleeding time has been demonstrated, although it did not exceed normal limits and did not produce clinically significant bleeding. In a double-blind, placebo-controlled trial (n=8,179), bleeding events were reported in 11.8% of patients receiving icosapent ethyl compared to 9.9% in the placebo group, most commonly gastrointestinal bleeding, contusion, hematuria, and epistaxis. Serious bleeding events were reported more frequently in icosapent ethyl-treated patients who were also on concomitant antithrombotic therapy (3.4%) compared to placebo-treated patients (2.6%) but occurred at the same rate (0.2%) in patients not on such concomitant therapy. However, the interaction was suspected in a case report of a 67-year-old woman treated with warfarin for 1.5 years who exhibited an increase in INR from 2.8 the previous month to 4.3 approximately one week after doubling her fish oil dosage from 1000 to 2000 mg/day. Prior to the increase, her INR had been stable and therapeutic for 5 months on warfarin 1.5 mg/day. The patient was advised to reduce her fish oil consumption to 1000 mg/day, while her warfarin dose was withheld for one day and then reduced to 1 mg alternating with 1.5 mg per day. Eight days later, her INR was subtherapeutic at 1.6, so the warfarin dosage was increased back to 1.5 mg/day. The patient's INR subsequently returned to therapeutic range.

MANAGEMENT: In general, patients should consult a healthcare provider before taking any herbal or nutritional supplements. Patients using omega-3 fatty acid-containing medicines, including icosapent ethyl, in combination with anticoagulants or other drugs that affect hemostasis should be advised of the potential for increased risk of bleeding complications.

References (8)
  1. (2005) "Product Information. Omacor (omega-3 polyunsaturated fatty acids)." Abbott Pharmaceutical
  2. Vanschoonbeek K, Feijge MA, Paquay J, et al. (2004) "Variable hypocoagulant effect of fish oil intake in humans: modulation of fibrinogen level and thrombin generation." Arterioscler Thromb Vasc Biol, 24, p. 1734-40
  3. Buckley MS, Goff AD, Knapp WE (2004) "Fish oil interaction with warfarin." Ann Pharmacother, 38, p. 50-3
  4. (2012) "Product Information. Vascepa (icosapent)." Amarin Pharmaceuticals Inc
  5. Li XL, Steiner M (1990) "Fish oil: a potent inhibitor of platelet adhesiveness." Blood, 76, p. 938-45
  6. (2022) "Product Information. Vazkepa (icosapent ethyl)." Seqirus Pty Ltd
  7. (2024) "Product Information. Vazkepa (icosapent ethyl)." Amarin Pharmaceuticals Ireland Ltd
  8. (2023) "Product Information. Icosapent Ethyl (icosapent)." Amneal Pharmaceuticals LLC

Drug and food interactions

Moderate

fedratinib food

Applies to: fedratinib

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of fedratinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. When a single 300 mg oral dose of fedratinib (0.75 times the recommended dose) was coadministered with 200 mg twice daily ketoconazole, a potent CYP450 3A4 inhibitor, fedratinib total systemic exposure (AUC(inf)) increased by approximately 3-fold. Using physiologically based pharmacokinetic (PBPK) simulations, coadministration of fedratinib 400 mg once daily and ketoconazole 400 mg once daily is predicted to increase fedratinib AUC at steady state by 2-fold. Coadministration with the moderate CYP450 3A4 inhibitors, erythromycin (500 mg three times daily) or diltiazem (120 mg twice daily), is predicted to increase fedratinib AUC by approximately 1.5- to 2-fold following single-dose administration and by approximately 1.2-fold at steady state. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased fedratinib exposure may potentiate the risk of adverse reactions such as nausea, vomiting, diarrhea, anemia, thrombocytopenia, neutropenia, encephalopathy (including Wernicke's), liver (ALT, AST) and pancreatic (amylase, lipase) enzyme elevations, increased blood creatinine, and secondary malignancies.

Food does not affect the oral bioavailability of fedratinib to a clinically significant extent. Administration of a single 500 mg dose (1.25 times the recommended dose) with a low-fat, low-calorie meal (162 calories; 6% from fat, 78% from carbohydrate, 16% from protein) or a high-fat, high-calorie meal (815 calories; 52% from fat, 33% from carbohydrate, 15% from protein) increased fedratinib peak plasma concentration (Cmax) and systemic exposure (AUC) by up to 14% and 24%, respectively.

MANAGEMENT: Fedratinib may be taken with or without food. However, administration with a high-fat meal may help reduce the incidence of nausea and vomiting. Patients should avoid consumption of grapefruit and grapefruit juice during treatment with fedratinib.

References (3)
  1. Wu F, Krishna G, Surapaneni S (2020) "Physiologically based pharmacokinetic modeling to assess metabolic drug-drug interaction risks and inform the drug label for fedratinib." Cancer Chemother Pharmacol, 86, p. 461-73
  2. (2022) "Product Information. Inrebic (fedratinib)." Bristol-Myers Squibb
  3. (2021) "Product Information. Inrebic (fedratinib)." Bristol-Myers Squibb Pharmaceuticals Ltd
Moderate

doxycycline food

Applies to: NutriDox Convenience Kit (doxycycline / omega-3 polyunsaturated fatty acids)

GENERALLY AVOID: The bioavailability of oral tetracyclines and iron salts may be significantly decreased during concurrent administration. Therapeutic failure may result. The proposed mechanism is chelation of tetracyclines by the iron cation, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. In ten healthy volunteers, simultaneous oral administration of ferrous sulfate 200 mg and single doses of various tetracyclines (200 mg to 500 mg) resulted in reductions in the serum levels of methacycline and doxycycline by 80% to 90%, oxytetracycline by 50% to 60%, and tetracycline by 40% to 50%. In another study, 300 mg of ferrous sulfate reduced the absorption of tetracycline by 81% and that of minocycline by 77%. Conversely, the absorption of iron has been shown to be decreased by up to 78% in healthy subjects and up to 65% in patients with iron depletion when ferrous sulfate 250 mg was administered with tetracycline 500 mg. Available data suggest that administration of iron 3 hours before or 2 hours after a tetracycline largely prevents the interaction with most tetracyclines except doxycycline. Due to extensive enterohepatic cycling, iron binding may occur with doxycycline even when it is given parenterally. It has also been shown that when iron is administered up to 11 hours after doxycycline, serum concentrations of doxycycline may still be reduced by 20% to 45%.

MANAGEMENT: Coadministration of a tetracycline with any iron-containing product should be avoided if possible. Otherwise, patients should be advised to stagger the times of administration by at least three to four hours, although separating the doses may not prevent the interaction with doxycycline.

References (11)
  1. Neuvonen PJ (1976) "Interactions with the absorption of tetracyclines." Drugs, 11, p. 45-54
  2. Gothoni G, Neuvonen PJ, Mattila M, Hackman R (1972) "Iron-tetracycline interaction: effect of time interval between the drugs." Acta Med Scand, 191, p. 409-11
  3. Venho VM, Salonen RO, Mattila MJ (1978) "Modification of the pharmacokinetics of doxycycline in man by ferrous sulphate or charcoal." Eur J Clin Pharmacol, 14, p. 277-80
  4. (2002) "Product Information. Minocin (minocycline)." Lederle Laboratories
  5. Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
  6. Bateman FJ (1970) "Effects of tetracyclines." Br Med J, 4, p. 802
  7. Neuvonen PJ, Gothoni G, Hackman R, Bjorksten K (1970) "Interference of iron with the absorption of tetracyclines in man." Br Med J, 4, p. 532-4
  8. Greenberger NJ (1971) "Absorption of tetracyclines: interference by iron." Ann Intern Med, 74, p. 792-3
  9. Neuvonen PJ, Penttila O (1974) "Effect of oral ferrous sulphate on the half-life of doxycycline in man." Eur J Clin Pharmacol, 7, p. 361-3
  10. (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
  11. (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.
Minor

doxycycline food

Applies to: NutriDox Convenience Kit (doxycycline / omega-3 polyunsaturated fatty acids)

Chronic alcohol consumption may enhance the elimination of doxycycline. The mechanism is induction of hepatic microsomal enzymes by alcohol. In one study, the half-life of doxycycline in six alcoholics was 10.5 hours, compared with 14.7 hours in six control patients. In addition, half the alcoholic patients had serum concentrations below what is generally considered the minimum therapeutic concentration (0.5 mcg/mL) at 12 to 24 hours after the dose. The investigators suggest that twice-a-day dosing may be indicated in these patients, especially if additional inducing drugs are used. The elimination of other tetracyclines probably is not affected by alcohol consumption.

References (1)
  1. Neuvonen PJ, Penttila O, Roos M, Tirkkonen J (1976) "Effect of long-term alcohol consumption on the half-life of tetracycline and doxycycline in man." Int J Clin Pharmacol Biopharm, 14, p. 303-7

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.