Skip to main content

Drug Interactions between fedratinib and mephenytoin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

mephenytoin fedratinib

Applies to: mephenytoin and fedratinib

MONITOR: Coadministration with fedratinib may increase the plasma concentrations of drugs that are substrates of the CYP450 3A4, 2C19, and/or 2D6 isoenzymes. Coadministration of fedratinib with a single dose each of the CYP450 3A4 substrate midazolam (2 mg), CYP450 2C19 substrate omeprazole (20 mg), and CYP450 2D6 substrate metoprolol (100 mg) increased the systemic exposure (AUC) of the substrates by 4-, 3-, and 2-fold, respectively.

MANAGEMENT: Caution is recommended when fedratinib is used concomitantly with substrates of CYP450 3A4, 2C19, and/or 2D6. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever fedratinib is added to or withdrawn from therapy, particularly those with a narrow therapeutic index.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. (2019) "Product Information. Inrebic (fedratinib)." Celgene Corporation

Switch to consumer interaction data

Drug and food interactions

Moderate

mephenytoin food

Applies to: mephenytoin

ADJUST DOSING INTERVAL: Phenytoin bioavailability may decrease to subtherapeutic levels when the suspension is given concomitantly with enteral feedings. The mechanism may be related to phenytoin binding to substances in the enteral formula (e.g., calcium, protein) and/or binding to the tube lumen. Data have been conflicting and some studies have reported no changes in phenytoin levels, while others have reported significant reductions.

MONITOR: Acute consumption of alcohol may increase plasma phenytoin levels. Chronic consumption of alcohol may decrease plasma phenytoin levels. The mechanism of this interaction is related to induction of phenytoin metabolism by ethanol during chronic administration. Other hydantoin derivatives may be similarly affected by ethanol.

MANAGEMENT: Some experts have recommended interrupting the feeding for 2 hours before and after the phenytoin dose, giving the phenytoin suspension diluted in water, and flushing the tube with water after administration; however, this method may not entirely avoid the interaction and is not always clinically feasible. Patients should be closely monitored for clinical and laboratory evidence of altered phenytoin efficacy and levels upon initiation and discontinuation of enteral feedings. Dosage adjustments or intravenous administration may be required until therapeutic serum levels are obtained. In addition, patients receiving phenytoin therapy should be warned about the interaction between phenytoin and ethanol and they should be advised to notify their physician if they experience worsening of seizure control or symptoms of toxicity, including drowsiness, visual disturbances, change in mental status, nausea, or ataxia.

References

  1. Sandor P, Sellers EM, Dumbrell M, Khouw V (1981) "Effect of short- and long-term alcohol use on phenytoin kinetics in chronic alcoholics." Clin Pharmacol Ther, 30, p. 390-7
  2. Holtz L, Milton J, Sturek JK (1987) "Compatibility of medications with enteral feedings." JPEN J Parenter Enteral Nutr, 11, p. 183-6
  3. Sellers EM, Holloway MR (1978) "Drug kinetics and alcohol ingestion." Clin Pharmacokinet, 3, p. 440-52
  4. (2001) "Product Information. Dilantin (phenytoin)." Parke-Davis
  5. Doak KK, Haas CE, Dunnigan KJ, et al. (1998) "Bioavailability of phenytoin acid and phenytoin sodium with enteral feedings." Pharmacotherapy, 18, p. 637-45
  6. Rodman DP, Stevenson TL, Ray TR (1995) "Phenytoin malabsorption after jejunostomy tube delivery." Pharmacotherapy, 15, p. 801-5
  7. Au Yeung SC, Ensom MH (2000) "Phenytoin and enteral feedings: does evidence support an interaction?" Ann Pharmacother, 34, p. 896-905
  8. Ozuna J, Friel P (1984) "Effect of enteral tube feeding on serum phenytoin levels." J Neurosurg Nurs, 16, p. 289-91
  9. Faraji B, Yu PP (1998) "Serum phenytoin levels of patients on gastrostomy tube feeding." J Neurosci Nurs, 30, p. 55-9
  10. Marvel ME, Bertino JS (1991) "Comparative effects of an elemental and a complex enteral feeding formulation on the absorption of phenytoin suspension." JPEN J Parenter Enteral Nutr, 15, p. 316-8
  11. Fleisher D, Sheth N, Kou JH (1990) "Phenytoin interaction with enteral feedings administered through nasogastric tubes." JPEN J Parenter Enteral Nutr, 14, p. 513-6
  12. Haley CJ, Nelson J (1989) "Phenytoin-enteral feeding interaction." DICP, 23, p. 796-8
  13. Guidry JR, Eastwood TF, Curry SC (1989) "Phenytoin absorption in volunteers receiving selected enteral feedings." West J Med, 150, p. 659-61
  14. Krueger KA, Garnett WR, Comstock TJ, Fitzsimmons WE, Karnes HT, Pellock JM (1987) "Effect of two administration schedules of an enteral nutrient formula on phenytoin bioavailability." Epilepsia, 28, p. 706-12
  15. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  16. Cerner Multum, Inc. "Australian Product Information."
View all 16 references

Switch to consumer interaction data

Moderate

fedratinib food

Applies to: fedratinib

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of fedratinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. When a single 300 mg oral dose of fedratinib (0.75 times the recommended dose) was coadministered with 200 mg twice daily ketoconazole, a potent CYP450 3A4 inhibitor, fedratinib total systemic exposure (AUC(inf)) increased by approximately 3-fold. Using physiologically based pharmacokinetic (PBPK) simulations, coadministration of fedratinib 400 mg once daily and ketoconazole 400 mg once daily is predicted to increase fedratinib AUC at steady state by 2-fold. Coadministration with the moderate CYP450 3A4 inhibitors, erythromycin (500 mg three times daily) or diltiazem (120 mg twice daily), is predicted to increase fedratinib AUC by approximately 1.5- to 2-fold following single-dose administration and by approximately 1.2-fold at steady state. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased fedratinib exposure may potentiate the risk of adverse reactions such as nausea, vomiting, diarrhea, anemia, thrombocytopenia, neutropenia, encephalopathy (including Wernicke's), liver (ALT, AST) and pancreatic (amylase, lipase) enzyme elevations, increased blood creatinine, and secondary malignancies.

Food does not affect the oral bioavailability of fedratinib to a clinically significant extent. Administration of a single 500 mg dose (1.25 times the recommended dose) with a low-fat, low-calorie meal (162 calories; 6% from fat, 78% from carbohydrate, 16% from protein) or a high-fat, high-calorie meal (815 calories; 52% from fat, 33% from carbohydrate, 15% from protein) increased fedratinib peak plasma concentration (Cmax) and systemic exposure (AUC) by up to 14% and 24%, respectively.

MANAGEMENT: Fedratinib may be taken with or without food. However, administration with a high-fat meal may help reduce the incidence of nausea and vomiting. Patients should avoid consumption of grapefruit and grapefruit juice during treatment with fedratinib.

References

  1. Wu F, Krishna G, Surapaneni S (2020) "Physiologically based pharmacokinetic modeling to assess metabolic drug-drug interaction risks and inform the drug label for fedratinib." Cancer Chemother Pharmacol, 86, p. 461-73
  2. (2022) "Product Information. Inrebic (fedratinib)." Bristol-Myers Squibb
  3. (2021) "Product Information. Inrebic (fedratinib)." Bristol-Myers Squibb Pharmaceuticals Ltd

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.