Skip to main content

Drug Interactions between Exaprin and Methacort 80

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

aspirin methylPREDNISolone

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide) and Methacort 80 (methylprednisolone)

MONITOR: Coadministration with corticosteroids may decrease the serum concentrations and therapeutic effects of salicylates. Likewise, serum salicylate levels may increase following withdrawal of corticosteroid therapy, potentially resulting in salicylate toxicity. This interaction has been reported in patients receiving intra-articular as well as oral corticosteroids. One or more mechanisms may be involved, including an increase in the renal clearance and/or an induction of hepatic metabolism of salicylates caused by corticosteroids. Pharmacologically, the potential for increased gastrointestinal (GI) toxicity, including inflammation, bleeding, ulceration and perforation, should be considered due to additive ulcerogenic effects of these agents (especially aspirin) on the GI mucosa.

MANAGEMENT: Patients treated concomitantly with a corticosteroid may require higher dosages of salicylates or salicylate-like drugs. Pharmacologic response to these agents should be monitored more closely whenever a corticosteroid is added to or withdrawn from therapy in patients stabilized on their existing salicylate regimen, and the salicylate dosage adjusted as necessary. During concomitant therapy, patients should be advised to take the medications with food and to immediately report signs and symptoms of GI ulceration and bleeding such as severe abdominal pain, dizziness, lightheadedness, and the appearance of black, tarry stools. The selective use of prophylactic anti-ulcer therapy (e.g., antacids, H2-antagonists) may be appropriate, particularly in patients with a prior history of peptic ulcer disease or GI bleeding and in elderly and debilitated patients.

References

  1. Baer PA, Shore A, Ikeman RL "Transient fall in serum salicylate levels following intraarticular injection of steroid in patients with rheumatoid arthritis." Arthritis Rheum 30 (1987): 345-7
  2. Koren G, Roifman C, Gelfand E, Lavi S, Suria D, Stein L "Corticosteroids-salicylate interaction in a case of juvenile rheumatoid arthritis." Ther Drug Monit 9 (1987): 177-9
  3. Edelman J, Potter JM, Hackett LP "The effect of intra-articular steroids on plasma salicylate concentrations." Br J Clin Pharmacol 21 (1986): 301-7
  4. Piper JM, Ray WA, Daugherty JR, Griffin MR "Corticosteroid use and peptic ulcer disease: role of nonsteroidal ani-inflammatory drugs." Ann Intern Med 114 (1991): 735-40
  5. Hansen RA, Tu W, Wang J, Ambuehl R, McDonald CJ, Murray MD "Risk of adverse gastrointestinal events from inhaled corticosteroids." Pharmacotherapy 28 (2008): 1325-34
View all 5 references

Switch to consumer interaction data

Moderate

aspirin salicylamide

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide) and Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

MONITOR: The combined use of low-dose or high-dose aspirin with other nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the potential for serious gastrointestinal (GI) toxicity, including inflammation, bleeding, ulceration, and perforation. Aspirin at anti-inflammatory dosages or higher may also decrease the plasma concentrations of many NSAIDs. The decreases have ranged from none or small (piroxicam, meloxicam, naproxen, tolmetin) to substantial (flurbiprofen, ibuprofen). However, the therapeutic response does not appear to be affected. Investigators theorize that aspirin may displace NSAIDs from plasma protein binding sites, resulting in increased concentration of unbound, or free, drug available for clearance. The increase in NSAID free fraction, and possibly some contributory anti-inflammatory effect from aspirin, may account for the lack of overall effect on therapeutic response.

MANAGEMENT: Caution is advised if aspirin, particularly at anti-inflammatory dosages, is used with other NSAIDs. Concomitant administration of NSAIDs is considered contraindicated or not recommended with aspirin at analgesic/anti-inflammatory dosages by many NSAID manufacturers. During concomitant therapy, patients should be advised to take the medications with food and to immediately report signs and symptoms of GI ulceration and bleeding such as abdominal pain, bloating, sudden dizziness or lightheadedness, nausea, vomiting, hematemesis, anorexia, and melena.

References

  1. Furst DE, Sarkissian E, Blocka K, et al. "Serum concentrations of salicylate and naproxen during concurrent therapy in patients with rheumatoid arthritis." Arthritis Rheum 30 (1987): 1157-61
  2. Abdel-Rahman MS, Reddi AS, Curro FA, Turkall RM, Kadry AM, Hansrote JA "Bioavailability of aspirin and salicylamide following oral co-administration in human volunteers." Can J Physiol Pharmacol 69 (1991): 1436-42
  3. Gruber CM "Clinical pharmacology of fenoprofen: a review." J Rheumatol 2 (1976): 8-17
  4. Cressman WA, Wortham GF, Plostnieks J "Absorption and excretion of tolemetin in man." Clin Pharmacol Ther 19 (1976): 224-33
  5. Kwan KC, Breault GO, Davis RL, et al. "Effects of concomitant aspirin administration on the pharmacokinetics of indomethacin in man." J Pharmacokinet Biopharm 6 (1978): 451-76
  6. Rubin A, Rodda BE, Warrick P, Gruber CM Jr, Ridolfo RS "Interactions of aspirin with nonsteroidal antiinflammatory drugs in man." Arthritis Rheum 16 (1973): 635-45
  7. Brooks PM, Walker JJ, Bell MA, Buchanan WW, Rhymer AR "Indomethacin--aspirin interaction: a clinical appraisal." Br Med J 3 (1975): 69-11
  8. Tempero KF, Cirillo VJ, Steelman SL "Diflunisal: a review of pharmacokinetic and pharmacodynamic properties, drug interactions, and special tolerability studies in humans." Br J Clin Pharmacol 4 (1977): s31-6
  9. Willis JV, Kendall MJ, Jack DB "A study of the effect of aspirin on the pharmacokinetics of oral and intravenous diclofenac sodium." Eur J Clin Pharmacol 18 (1980): 415-8
  10. Muller FO, Hundt HK, Muller DG "Pharmacokinetic and pharmacodynamic implications of long-term administration of non-steroidal anti-inflammatory agents." Int J Clin Pharmacol Biopharm 15 (1977): 397-402
  11. Hobbs DC, Twomey TM "Piroxicam pharmacokinetics in man: aspirin and antacid interaction studies." J Clin Pharmacol 19 (1979): 270-81
  12. Pawlotsky Y, Chales G, Grosbois B, Miane B, Bourel M "Comparative interaction of aspirin with indomethacin and sulindac in chronic rheumatic diseases." Eur J Rheumatol Inflamm 1 (1978): 18-20
  13. Segre EJ, Chaplin M, Forchielli E, Runkel R, Sevelius H "Naproxen-aspirin interactions in man." Clin Pharmacol Ther 15 (1973): 374-9
  14. Bird HA, Hill J, Leatham P, Wright V "A study to determine the clinical relevance of the pharmacokinetic interaction between aspirin and diclofenac." Agents Actions 18 (1986): 447-9
  15. Brooks PM, Khong T "Flurbiprofen-aspirin interaction: a double-blind crossover study." Curr Med Res Opin 5 (1977): 53-7
  16. Grennan DM, Ferry DG, Ashworth ME, Kenny RE, Mackinnnon M "The aspirin-ibuprofen interaction in rheumatoid arthritis." Br J Clin Pharmacol 8 (1979): 497-503
  17. Williams RL, Upton RA, Buskin JN, Jones RM "Ketoprofen-aspirin interactions." Clin Pharmacol Ther 30 (1981): 226-31
  18. Kaiser DG, Brooks CD, Lomen PL "Pharmacokinetics of flurbiprofen." Am J Med 80 (1986): 10-5
  19. Kahn SB, Hubsher JA "Effects of oxaprozin alone or in combination with aspirin on hemostasis and plasma protein binding." J Clin Pharmacol 23 (1983): 139-46
  20. "Product Information. Mobic (meloxicam)." Boehringer-Ingelheim PROD (2001):
  21. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  22. Cerner Multum, Inc. "Australian Product Information." O 0
View all 22 references

Switch to consumer interaction data

Moderate

methylPREDNISolone salicylamide

Applies to: Methacort 80 (methylprednisolone) and Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

MONITOR: The combined use of corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the potential for serious gastrointestinal (GI) toxicity, including inflammation, bleeding, ulceration, and perforation. In a large, case-control study of elderly patients, those who used corticosteroids and NSAIDs concurrently had an estimated relative risk (RR) for peptic ulcer disease and GI hemorrhage of 14.6 compared to those who used neither. Corticosteroid use was associated with a doubling of the risk (estimated RR = 2.0), but the risk was confined to those who also used NSAIDs. It is possible that both categories of agents are ulcerogenic and have additive effects on the GI mucosa during coadministration. Some investigators have also suggested that the primary effect of corticosteroids in this interaction is to delay healing of erosions caused by NSAIDs rather than cause de novo ulcerations.

MANAGEMENT: Caution is advised if corticosteroids and NSAIDs are used together, especially in patients with a prior history of peptic ulcer disease or GI bleeding and in elderly and debilitated patients. During concomitant therapy, patients should be advised to take the medications with food and to immediately report signs and symptoms of GI ulceration and bleeding such as severe abdominal pain, dizziness, lightheadedness, and the appearance of black, tarry stools. The selective use of prophylactic anti-ulcer therapy (e.g., antacids, H2-antagonists) may be considered.

References

  1. Stewart JT, Pennington CR, Pringle R "Anti-inflammatory drugs and bowel perforations and haemorrhage." Br Med J 290 (1985): 787-8
  2. Thomas TP "The complications of systemic corticosteroid therapy in the elderly." Gerontology 30 (1984): 60-5
  3. Messer J, Reitman D, Sacks HS, et al. "Association of adrenocorticosteroid therapy and peptic-ulcer disease." N Engl J Med 309 (1983): 21-4
  4. ReMine SG, McIlrath DC "Bowel perforation in steroid-treated patients." Ann Surg 192 (1980): 581-6
  5. Levy M, Miller DR, Kaufman DW, Siskind V, Schwingl P, Rosenberg L, Strom B, Shapiro S "Major upper gastrointestinal tract bleeding. Relation to the use of aspirin and other nonnarcotic analgesics." Arch Intern Med 148 (1988): 281-5
  6. Kaufman DW, Kelly JP, Sheehan JE, Laszlo A, Wiholm BE, Alfredsson L, Koff RS, Shapiro S "Nonsteroidal anti-inflammatory drug use in relation to major upper gastrointestinal bleeding." Clin Pharmacol Ther 53 (1993): 485-94
  7. Wilcox CM, Shalek KA, Cotsonis G "Striking prevalence of over-the-counter nonsteroidal anti- inflammatory drug use in patients with upper gastrointestinal hemorrhage." Arch Intern Med 154 (1994): 42-6
  8. Cantu TG, Lipani JA "Gastrointestinal ulceration with NSAIDs." Am J Med 99 (1995): 440-1
  9. Sacanella E, Munoz F, Cardellach F, Estruch R, Miro O, Urbanomarquez A "Massive haemorrhage due to colitis secondary to nonsteroidal anti-inflammatory drugs." Postgrad Med J 72 (1996): 57-8
  10. Buchman AL, Schwartz MR "Colonic ulceration associated with the systemic use of nonsteroidal antiinflammatory medication." J Clin Gastroenterol 22 (1996): 224-6
  11. Piper JM, Ray WA, Daugherty JR, Griffin MR "Corticosteroid use and peptic ulcer disease: role of nonsteroidal ani-inflammatory drugs." Ann Intern Med 114 (1991): 735-40
View all 11 references

Switch to consumer interaction data

Minor

aspirin caffeine

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide) and Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet 11 (1986): 71-6

Switch to consumer interaction data

Drug and food interactions

Major

acetaminophen food

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med 145 (1985): 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA 255 (1986): 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med 104 (1986): 399-404
  4. Thummel KE, Slattery JT, Nelson SD "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther 245 (1988): 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA 244 (1980): 251-3
  6. Kartsonis A, Reddy KR, Schiff ER "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med 105 (1986): 138-9
  7. Prescott LF, Critchley JA "Drug interactions affecting analgesic toxicity." Am J Med 75 (1983): 113-6
  8. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical PROD (2002):
  9. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  10. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  11. Nelson EB, Temple AR "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  12. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
View all 12 references

Switch to consumer interaction data

Moderate

methylPREDNISolone food

Applies to: Methacort 80 (methylprednisolone)

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther 49 (1991): 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  4. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie 49 (1994): 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  8. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther 58 (1995): 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol 36 (1996): 469-76
  11. Majeed A, Kareem A "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol 10 (1996): 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol 42 (1996): p662
  13. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther 63 (1998): 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet 23 (1998): 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther 64 (1998): 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther 64 (1998): 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  22. Eagling VA, Profit L, Back DJ "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol 48 (1999): 543-52
  23. Damkier P, Hansen LL, Brosen K "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol 48 (1999): 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther 21 (1999): 1890-9
  25. Dresser GK, Spence JD, Bailey DG "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet 38 (2000): 41-57
  26. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol 49 (2000): 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit 23 (2001): 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol 44 (1993): 295-8
  32. Flanagan D "Understanding the grapefruit-drug interaction." Gen Dent 53 (2005): 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Moderate

aspirin food

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn PROD (2002):

Switch to consumer interaction data

Moderate

salicylamide food

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn PROD (2002):

Switch to consumer interaction data

Minor

caffeine food

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References

  1. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy 16 (1996): 1046-52

Switch to consumer interaction data

Minor

aspirin food

Applies to: Exaprin (acetaminophen / aspirin / caffeine / salicylamide)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet 11 (1986): 71-6

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.