Skip to main content

Drug Interactions between Evotrox and Proquin XR

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

ciprofloxacin levothyroxine

Applies to: Proquin XR (ciprofloxacin) and Evotrox (levothyroxine)

ADJUST DOSING INTERVAL: Limited data suggest that simultaneous administration of oral ciprofloxacin may interfere with the gastrointestinal absorption of levothyroxine. The mechanism has not been described. In one case report, two elderly patients stabilized on levothyroxine therapy developed hypothyroidism three and four weeks after starting treatment with oral ciprofloxacin. Other concomitant medications were unchanged. In one of the patients, increasing the dosage of levothyroxine had no effect, and thyroid function tests normalized only after discontinuation of ciprofloxacin. In the other patient, thyroid function tests normalized soon after switching from concomitant administration of levothyroxine and ciprofloxacin to administration with a six hour gap.

MANAGEMENT: Although data are limited, it may be prudent to advise patients to separate administration of levothyroxine and ciprofloxacin by several hours to minimize the potential for interaction.

References

  1. Cooper JG, Harboe K, Frost SK, Skadberg O "Ciprofloxacin interacts with thyroid replacement therapy." BMJ 330 (2005): 1002

Switch to consumer interaction data

Drug and food interactions

Moderate

ciprofloxacin food

Applies to: Proquin XR (ciprofloxacin)

ADJUST DOSING INTERVAL: Concurrent ingestion of dairy products (milk, yogurt) or calcium-fortified foods (i.e., cereal, orange juice) may decrease the activity of certain oral fluoroquinolone antibiotics. The mechanism is chelation of calcium and the quinolone, resulting in decreased bioavailability. In the case of orange juice, inhibition of intestinal transport mechanisms (P-glycoprotein or organic anion-transporting polypeptides) by flavones may also be involved. One study reported an average 41% decrease in maximum plasma concentrations and a 38% decrease in AUC when ciprofloxacin was given with calcium-fortified orange juice instead of water. Administration of ciprofloxacin tablets with enteral nutrition may reduce its bioavailability and maximum serum concentrations. Data have been conflicting and variable by the type of enteral nutrition product, location of the feeding tube, and patient characteristics. Decreased absorption is expected if ciprofloxacin is given by jejunostomy tube.

MANAGEMENT: Oral ciprofloxacin should not be taken with dairy products or calcium-fortified foods alone, but may be taken with meals that contain these products. When taken alone, dairy products or calcium-fortified foods should be ingested at least 2 hours before or after ciprofloxacin administration. When ciprofloxacin tablets are administered to patients receiving continuous enteral nutrition, some experts recommend that the tube feeding should be interrupted for at least 1 hour before and 2 hours after the dose of ciprofloxacin is given. Patients should be monitored for altered antimicrobial efficacy and switched to intravenous ciprofloxacin if necessary. If no enteral route besides a jejunostomy tube is available, it is also recommended to switch to intravenous ciprofloxacin. According to the manufacturer, ciprofloxacin oral suspension should not be administered via nasogastric or feeding tubes due to its physical characteristics.

References

  1. "Product Information. Cipro (ciprofloxacin)." Bayer PROD (2002):
  2. Yuk JH, Nightingale CH, Sweeney KR, Quintiliani R, Lettieri JT, Forst RW "Relative bioavailability in healthy volunteers of ciprofloxacin administered through a nasogastric tube with and without enteral feeding." Antimicrob Agents Chemother 33 (1989): 1118-20
  3. Yuk JH, Nightingale CH, Quintiliani R "Absorption of ciprofloxacin administered through a nasogastric or a nasoduodenal tube in volunteers and patients receiving enteral nutrition." Diagn Microbiol Infect Dis 13 (1990): 99-102
  4. Noer BL, Angaran DW "The effect of enteral feedings on ciprofloxacin pharmacokinetics." Pharmacotherapy 10 (1990): 254
  5. Neuhofel AL, Wilton JH, Victory JM, Hejmanowsk LG, Amsden GW "Lack of bioequivalence of ciprofloxacin when administered with calcium-fortified orange juice: a new twist on an old interaction." J Clin Pharmacol 42 (2002): 461-6
  6. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm 66 (2009): 1438-67
View all 6 references

Switch to consumer interaction data

Moderate

levothyroxine food

Applies to: Evotrox (levothyroxine)

ADJUST DOSING INTERVAL: Consumption of certain foods as well as the timing of meals relative to dosing may affect the oral absorption of T4 thyroid hormone (i.e., levothyroxine). T4 oral absorption is increased by fasting and decreased by foods such as soybean flour (e.g., infant formula), cotton seed meal, walnuts, dietary fiber, calcium, and calcium fortified juices. Grapefruit or grapefruit products may delay the absorption of T4 thyroid hormone and reduce its bioavailability. The mechanism of this interaction is not fully understood.

MANAGEMENT: Some manufacturers recommend administering oral T4 as a single daily dose, on an empty stomach, one-half to one hour before breakfast. In general, oral preparations containing T4 thyroid hormone should be administered on a consistent schedule with regard to time of day and relation to meals to avoid large fluctuations in serum levels. Foods that may affect T4 absorption should be avoided within several hours of dosing if possible. Consult local guidelines for the administration of T4 in patients receiving enteral feeding.

References

  1. "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical PROD (2002):
  2. "Product Information. Armour Thyroid (thyroid desiccated)." Forest Pharmaceuticals (2022):
  3. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm 66 (2009): 1438-67

Switch to consumer interaction data

Moderate

ciprofloxacin food

Applies to: Proquin XR (ciprofloxacin)

ADJUST DOSING INTERVAL: Oral preparations that contain magnesium, aluminum, or calcium may significantly decrease the gastrointestinal absorption of quinolone antibiotics. Absorption may also be reduced by sucralfate, which contains aluminum, as well as other polyvalent cations such as iron and zinc. The mechanism is chelation of quinolones by polyvalent cations, forming a complex that is poorly absorbed from the gastrointestinal tract. The bioavailability of ciprofloxacin has been reported to decrease by as much as 90% when administered with antacids containing aluminum or magnesium hydroxide.

MANAGEMENT: When coadministration cannot be avoided, quinolone antibiotics should be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation-containing products to minimize the potential for interaction. When coadministered with Suprep Bowel Prep (magnesium/potassium/sodium sulfates), the manufacturer recommends administering fluoroquinolone antibiotics at least 2 hours before and not less than 6 hours after Suprep Bowel Prep to avoid chelation with magnesium. Please consult individual product labeling for specific recommendations.

References

  1. Polk RE, Helay DP, Sahai J, Drwal L, Racht E "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother 33 (1989): 1841-4
  2. Nix DE, Watson WA, Lener ME, et al. "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther 46 (1989): 700-5
  3. Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother 34 (1990): 931-3
  4. Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother 36 (1992): 830-2
  5. Yuk JH "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc 262 (1989): 901
  6. Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother 33 (1989): 1901-7
  7. Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol 33 (1992): 115-6
  8. Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother 33 (1989): 99-102
  9. Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother 34 (1990): 432-5
  10. Akerele JO, Okhamafe AO "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother 28 (1991): 87-94
  11. Wadworth AN, Goa KL "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs 42 (1991): 1018-60
  12. Shimada J, Shiba K, Oguma T, et al. "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother 36 (1992): 1219-24
  13. Sahai J, Healy DP, Stotka J, Polk RE "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol 35 (1993): 302-4
  14. Lehto P, Kivisto KT "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother 38 (1994): 248-51
  15. Noyes M, Polk RE "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med 109 (1988): 168-9
  16. Grasela TH Jr, Schentag JJ, Sedman AJ, et al. "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother 33 (1989): 615-7
  17. Lehto P, Kivisto KT "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther 56 (1994): 477-82
  18. Spivey JM, Cummings DM, Pierson NR "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy 16 (1996): 314-6
  19. "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical PROD (2001):
  20. "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome PROD (2001):
  21. "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer PROD (2001):
  22. "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals PROD (2001):
  23. Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother 39 Suppl B (1997): 93-7
  24. Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother 41 (1997): 1668-72
  25. Honig PK, Gillespie BK "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet 35 (1998): 167-71
  26. Johnson RD, Dorr MB, Talbot GH, Caille G "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther 20 (1998): 1149-58
  27. Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother 43 (1999): 1067-71
  28. Allen A, Vousden M, Porter A, Lewis A "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy 45 (1999): 504-11
  29. Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol 49 (2000): 98-103
  30. "Product Information. Factive (gemifloxacin)." *GeneSoft Inc (2003):
  31. "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories (2010):
  32. "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc. (2017):
View all 32 references

Switch to consumer interaction data

Moderate

levothyroxine food

Applies to: Evotrox (levothyroxine)

ADJUST DOSING INTERVAL: Concurrent administration of calcium-containing products may decrease the oral bioavailability of levothyroxine by one-third in some patients. Pharmacologic effects of levothyroxine may be reduced. The exact mechanism of interaction is unknown but may involve nonspecific adsorption of levothyroxine to calcium at acidic pH levels, resulting in an insoluble complex that is poorly absorbed from the gastrointestinal tract. In one study, 20 patients with hypothyroidism who were taking a stable long-term regimen of levothyroxine demonstrated modest but significant decreases in mean free and total thyroxine (T4) levels as well as a corresponding increase in mean thyrotropin (thyroid-stimulating hormone, or TSH) level following the addition of calcium carbonate (1200 mg/day of elemental calcium) for 3 months. Four patients had serum TSH levels that were higher than the normal range. Both T4 and TSH levels returned to near-baseline 2 months after discontinuation of calcium, which further supported the likelihood of an interaction. In addition, there have been case reports suggesting decreased efficacy of levothyroxine during calcium coadministration. It is not known whether this interaction occurs with other thyroid hormone preparations.

MANAGEMENT: Some experts recommend separating the times of administration of levothyroxine and calcium-containing preparations by at least 4 hours. Monitoring of serum TSH levels is recommended. Patients with gastrointestinal or malabsorption disorders may be at a greater risk of developing clinical or subclinical hypothyroidism due to this interaction.

References

  1. Schneyer CR "Calcium carbonate and reduction of levothyroxine efficacy." JAMA 279 (1998): 750
  2. Singh N, Singh PN, Hershman JM "Effect of calcium carbonate on the absorption of levothyroxine." JAMA 283 (2000): 2822-5
  3. Csako G, McGriff NJ, Rotman-Pikielny P, Sarlis NJ, Pucino F "Exaggerated levothyroxine malabsorption due to calcium carbonate supplementation in gastrointestinal disorders." Ann Pharmacother 35 (2001): 1578-83
  4. Neafsey PJ "Levothyroxine and calcium interaction: timing is everything." Home Healthc Nurse 22 (2004): 338-9
View all 4 references

Switch to consumer interaction data

Moderate

ciprofloxacin food

Applies to: Proquin XR (ciprofloxacin)

MONITOR: Coadministration with certain quinolones may increase the plasma concentrations and pharmacologic effects of caffeine due to inhibition of the CYP450 1A2 metabolism of caffeine. Quinolones that may inhibit CYP450 1A2 include ciprofloxacin, enoxacin, grepafloxacin, nalidixic acid, norfloxacin, pipemidic acid, and pefloxacin (not all commercially available). In healthy volunteers, enoxacin (100 to 400 mg twice daily) increased systemic exposure (AUC) of caffeine by 2- to 5-fold and reduced its clearance by approximately 80%. Pipemidic acid (400 to 800 mg twice daily) increased AUC of caffeine by 2- to 3-fold and reduced its clearance by approximately 60%. Ciprofloxacin (250 to 750 mg twice daily) increased AUC and elimination half-life of caffeine by 50% to over 100%, and reduced its clearance by 30% to 50%. Norfloxacin 400 mg twice daily increased caffeine AUC by 16%, while 800 mg twice daily increased caffeine AUC by 52% and reduced its clearance by 35%. Pefloxacin (400 mg twice daily) has been shown to reduce caffeine clearance by 47%.

MANAGEMENT: Patients using caffeine-containing products should be advised that increased adverse effects such as headache, tremor, restlessness, nervousness, insomnia, tachycardia, and blood pressure increases may occur during coadministration with quinolones that inhibit CYP450 1A2. Caffeine intake should be limited when taking high dosages of these quinolones. If an interaction is suspected, other quinolones such as gatifloxacin, gemifloxacin, levofloxacin, lomefloxacin, moxifloxacin, and ofloxacin may be considered, since they are generally believed to have little or no effect on CYP450 1A2 or have been shown not to interact with caffeine.

References

  1. Polk RE "Drug-drug interactions with ciprofloxacin and other fluoroquinolones." Am J Med 87 (1989): s76-81
  2. Healy DP, Polk RE, Kanawati L, Rock DT, Mooney ML "Interaction between oral ciprofloxacin and caffeine in normal volunteers." Antimicrob Agents Chemother 33 (1989): 474-8
  3. Harder S, Fuhr U, Staib AH, Wolf T "Ciprofloxacin-caffeine: a drug interaction established using in vivo and in vitro investigations." Am J Med 87 (1989): 89-91
  4. Carbo ML, Segura J, De la Torre R, et al. "Effect of quinolones on caffeine disposition." Clin Pharmacol Ther 45 (1989): 234-40
  5. "Product Information. Penetrax (enoxacin)." Rhone-Poulenc Rorer, Collegeville, PA. (1993):
  6. Mahr G, Sorgel F, Granneman GR, et al. "Effects of temafloxacin and ciprofloxacin on the pharmacokinetics of caffeine." Clin Pharmacokinet 22 (1992): 90-7
  7. "Product Information. Cipro (ciprofloxacin)." Bayer PROD (2002):
  8. "Product Information. Noroxin (norfloxacin)." Merck & Co., Inc PROD (2001):
  9. Staib AH, Stille W, Dietlein G, et al. "Interaction between quinolones and caffeine." Drugs 34 Suppl 1 (1987): 170-4
  10. Stille W, Harder S, Micke S, et al. "Decrease of caffeine elimination in man during co-administration of 4-quinolones." J Antimicrob Chemother 20 (1987): 729-34
  11. Harder S, Staib AH, Beer C, Papenburg A, Stille W, Shah PM "4-Quinolones inhibit biotransformation of caffeine." Eur J Clin Pharmacol 35 (1988): 651-6
  12. Nicolau DP, Nightingale CH, Tessier PR, et al. "The effect of fleroxacin and ciprofloxacin on the pharmacokinetics of multiple dose caffeine." Drugs 49 Suppl 2 (1995): 357-9
  13. "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome PROD (2001):
  14. Carrillo JA, Benitez J "Clinically significant pharmacokinetic interactions between dietary caffeine and medications." Clin Pharmacokinet 39 (2000): 127-53
  15. Fuhr U, Wolff T, Harder S, Schymanski P, Staib AH "Quinolone inhibition of cytochrome P-450 dependent caffeine metabolism in human liver microsomes." Drug Metab Dispos 18 (1990): 1005-10
  16. Kinzig-Schippers M, Fuhr U, Zaigler M, et al. "Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2." Clin Pharmacol Ther 65 (1999): 262-74
  17. Healy DP, Schoenle JR, Stotka J, Polk RE "Lack of interaction between lomefloxacin and caffeine in normal volunteers." Antimicrob Agents Chemother 35 (1991): 660-4
View all 17 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.