Skip to main content

Drug Interactions between etravirine and terfenadine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

terfenadine etravirine

Applies to: terfenadine and etravirine

MONITOR: Coadministration with etravirine may decrease the plasma concentrations of drugs that are substrates of the CYP450 3A4 isoenzyme. The mechanism is accelerated clearance due to induction of CYP450 3A4 activity by etravirine. In 15 study subjects coadministered etravirine and the CYP450 3A4 substrate sildenafil (50 mg single dose), sildenafil peak plasma concentration (Cmax) and systemic exposure (AUC) decreased by 45% and 57%, respectively, while Cmax and AUC of its active N-desmethyl metabolite decreased by 25% and 41%, respectively.

MANAGEMENT: Caution is advised if etravirine must be used concomitantly with medications that undergo metabolism by CYP450 3A4, particularly those with a narrow therapeutic range. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever etravirine is added to or withdrawn from therapy.

References

  1. (2008) "Product Information. Intelence (etravirine)." Ortho Biotech Inc

Switch to consumer interaction data

Drug and food interactions

Major

terfenadine food

Applies to: terfenadine

CONTRAINDICATED: The consumption of grapefruit juice has been associated with significantly increased plasma concentrations of terfenadine. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. Terfenadine in high serum levels has been associated with prolongation of the QT interval and development of torsade de pointes, a potentially fatal ventricular arrhythmia.

MANAGEMENT: Due to the risk of cardiotoxicity, patients receiving the drug should be advised to avoid consumption of grapefruit products. Loratadine, cetirizine, and fexofenadine may be safer alternatives in patients who may have trouble adhering to the dietary restriction.

References

  1. Honig PK, Woosley RL, Zamani K, Conner DP, Cantilena LR Jr (1992) "Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin." Clin Pharmacol Ther, 52, p. 231-8
  2. Zimmermann M, Duruz H, Guinand O, et al. (1992) "Torsades de Pointes after treatment with terfenadine and ketoconazole." Eur Heart J, 13, p. 1002-3
  3. Mathews DR, McNutt B, Okerholm R, et al. (1991) "Torsades de pointes occurring in association with terfenadine use." JAMA, 266, p. 2375-6
  4. Monahan BP, Ferguson CL, Killeavy ES, et al. (1990) "Torsades de pointes occurring in association with terfenadine use." JAMA, 264, p. 2788-90
  5. Honig PK, Wortham DC, Zamani K, et al. (1993) "Terfenadine-ketoconazole interaction: pharmacokinetic and electrocardiographic consequences." JAMA, 269, p. 1513-8
  6. Pohjola-Sintonen S, Viitasalo M, Toivonene L, Neuvonen P (1993) "Torsades de pointes after terfenadine-itraconazole interaction." BMJ, 306, p. 186
  7. Cortese LM, Bjornson DC (1992) "Potential interaction between terfenadine and macrolide antibiotics." Clin Pharm, 11, p. 675
  8. Paris DG, Parente TF, Bruschetta HR, Guzman E, Niarchos AP (1994) "Torsades-de-pointes induced by erythromycin and terfenadine." Am J Emerg Med, 12, p. 636-8
  9. Zechnich AD, Haxby DG (1996) "Drug interactions associated with terfenadine and related nonsedating antihistamines." West J Med, 164, p. 68-9
  10. Honig PK, Wortham DC, Lazarev A, Cantilena LR (1996) "Grapefruit juice alters the systemic bioavailability and cardiac repolarization of terfenadine in poor metabolizers of terfenadine." J Clin Pharmacol, 36, p. 345-51
  11. Woosley RL (1996) "Cardiac actions of antihistamines." Annu Rev Pharmacol Toxicol, 36, p. 233-52
  12. Benton RE, Honig PK, Zamani K, Cantilena LR, Woosley RL (1996) "Grapefruit juice alters terfenadine pharmacokinetics resulting in prolongation of repolarization on the electrocardiogram." Clin Pharmacol Ther, 59, p. 383-8
  13. Hsieh MH, Chen SA, Chiang CE, et al. (1996) "Drug-induced torsades de pointes in one patient with congenital long QT syndrome." Int J Cardiol, 54, p. 85-8
  14. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  15. Rau SE, Bend JR, Arnold JMO, Tran LT, Spence JD, Bailey DG (1997) "Grapefruit juice terfenadine single-dose interaction: Magnitude, mechanism, and relevance." Clin Pharmacol Ther, 61, p. 401-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
View all 17 references

Switch to consumer interaction data

Moderate

etravirine food

Applies to: etravirine

ADJUST DOSING INTERVAL: Coadministration with food increases the oral bioavailability of etravirine. The mechanism is unknown. Compared to administration following a meal, the systemic exposure (AUC) to etravirine was decreased by about 50% when the drug was administered under fasting conditions. The types of meal studied (ranging from 345 kilocalories containing 17 grams fat to 1160 kilocalories containing 70 grams fat) did not appear to make a difference with respect to impact on etravirine bioavailability.

MANAGEMENT: Etravirine should always be administered following a meal.

References

  1. (2008) "Product Information. Intelence (etravirine)." Ortho Biotech Inc

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.