Drug Interactions between etrasimod and procarbazine
This report displays the potential drug interactions for the following 2 drugs:
- etrasimod
- procarbazine
Interactions between your drugs
procarbazine etrasimod
Applies to: procarbazine and etrasimod
GENERALLY AVOID: Coadministration of etrasimod with antineoplastic, immunosuppressive, or other immune-modulating therapies may increase the risk of unintended additive immunosuppressive effects. Etrasimod causes reversible sequestration of lymphocytes in lymphoid tissues. When administered daily for 52 weeks, etrasimod produced a mean reduction in peripheral blood lymphocyte count to 45% of baseline values, which may increase the risk of infections. Life-threatening and rare fatal infections have occurred in association with other sphingosine 1-phosphate (S1P) receptor modulators. Decreased lymphocyte counts persist during chronic daily dosing and generally return to normal within 4 to 5 weeks after stopping the medication.
MANAGEMENT: The safety and efficacy of etrasimod in combination with antineoplastic, immunosuppressive, or immune-modulating agents have not been evaluated. Because its pharmacodynamic effects may persist for up to 5 weeks after treatment discontinuation, concomitant use during and within 5 weeks following the last dose of etrasimod with antineoplastic, immunosuppressive, or immune-modulating agents should generally be avoided. If concomitant use within this period is considered necessary, patients should be monitored for infectious complications during this extended period. When switching from drugs with prolonged immune effects to etrasimod, the half-life and mode of action of these drugs must also be considered to avoid unintended additive immunosuppressive effects.
References (1)
- (2023) "Product Information. Velsipity (etrasimod)." Pfizer U.S. Pharmaceuticals Group
Drug and food interactions
procarbazine food
Applies to: procarbazine
CONTRAINDICATED: Foods that contain large amounts of tyramine may precipitate a hypertensive crisis in patients treated with monoamine oxidase inhibitors (MAOIs). The mechanism is inhibition of MAO-A, the enzyme responsible for metabolizing exogenous amines such as tyramine in the gut and preventing them from being absorbed intact. Once absorbed, tyramine is metabolized to octopamine, a substance that is believed to displace norepinephrine from storage granules.
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of MAOIs. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.
MANAGEMENT: In general, patients treated with MAOIs or other agents that possess MAOI activity (e.g., furazolidone, linezolid, procarbazine) should avoid consumption of products that contain large amounts of amines and protein foods in which aging or breakdown of protein is used to increase flavor. These foods include cheese (particularly strong, aged or processed cheeses), sour cream, wine (particularly red wine), champagne, beer, pickled herring, anchovies, caviar, shrimp paste, liver (particularly chicken liver), dry sausage, salamis, figs, raisins, bananas, avocados, chocolate, soy sauce, bean curd, sauerkraut, yogurt, papaya products, meat tenderizers, fava bean pods, protein extracts, yeast extracts, and dietary supplements. Caffeine may also precipitate hypertensive crisis so its intake should be minimized as well. At least 14 days should elapse following discontinuation of MAOI therapy before these foods may be consumed. Specially designed reference materials and dietary consultation are recommended so that an appropriate and safe diet can be planned. Patients should be advised to promptly seek medical attention if they experience potential signs and symptoms of a hypertensive crisis such as severe headache, visual disturbances, difficulty thinking, stupor or coma, seizures, chest pain, unexplained nausea or vomiting, and stroke-like symptoms. Patients should also be counseled not to use MAOIs with alcohol, and to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them.
References (19)
- Pettinger WA, Soyangco FG, Oates JA (1968) "Inhibition of monoamine oxidase in man by furazolidone." Clin Pharmacol Ther, 9, p. 442-7
- Goldberg LI (1964) "Monoamine oxidase inhibitors: adverse reactions and possible mechanisms." JAMA, 190, p. 456-62
- Nuessle WF, Norman FC, Miller HE (1965) "Pickled herring and tranylcypromine reaction." JAMA, 192, p. 142-3
- Sweet RA, Liebowitz MR, Holt CS, Heimberg RG (1991) "Potential interactions between monoamine oxidase inhibitors and prescribed dietary supplements." J Clin Psychopharmacol, 11, p. 331-2
- Walker JI, Davidson J, Zung WWK (1984) "Patient compliance with MAO Inhibitor therapy." J Clin Psychiatry, 45, p. 78-80
- Ban TA (1975) "Drug interactions with psychoactive drugs." Dis Nerv Syst, 36, p. 164-6
- Darcy PF, Griffin JP (1995) "Interactions with drugs used in the treatment of depressive illness." Adverse Drug React Toxicol Rev, 14, p. 211-31
- Maxwell MB (1980) "Reexamining the dietary restrictions with procarbazine (an MAOI)." Cancer Nurs, 3, p. 451-7
- (2001) "Product Information. Matulane (procarbazine)." Roche Laboratories
- De Vita VT, Hahn MA, Oliverio VT (1965) "Monoamine oxidase inhibition by a new carcinostatic agent, n-isopropyl-a-(2-methylhydrazino)-p-toluamide (MIH). (30590)." Proc Soc Exp Biol Med, 120, p. 561-5
- Zetin M, Plon L, DeAntonio M (1987) "MAOI reaction with powdered protein dietary supplement." J Clin Psychiatry, 48, p. 499
- Domino EF, Selden EM (1984) "Red wine and reactions." J Clin Psychopharmacol, 4, p. 173-4
- Tailor SA, Shulman KI, Walker SE, Moss J, Gardner D (1994) "Hypertensive episode associated with phenelzine and tap beer--a reanalysis of the role of pressor amines in beer." J Clin Psychopharmacol, 14, p. 5-14
- Pohl R, Balon R, Berchou R (1988) "Reaction to chicken nuggets in a patient taking an MAOI." Am J Psychiatry, 145, p. 651
- (2001) "Product Information. Furoxone (furazolidone)." Roberts Pharmaceutical Corporation
- (2001) "Product Information. Nardil (phenelzine)." Parke-Davis
- (2001) "Product Information. Marplan (isocarboxazid)." Roche Laboratories
- (2001) "Product Information. Zyvox (linezolid)." Pharmacia and Upjohn
- Martin TG (1996) "Serotonin syndrome." Ann Emerg Med, 28, p. 520-6
etrasimod food
Applies to: etrasimod
GENERALLY AVOID: Coadministration with moderate inhibitors of CYP450 3A4 such as grapefruit juice in patients who known or suspected to be poor CYP450 2C9 metabolizers may increase the exposure of etrasimod. Etrasimod is primarily metabolized by the isoenzymes CYP450 3A4, 2C8, and 2C9. Pharmacokinetic studies have reported that no single enzyme system appears to dominate the elimination pathway of etrasimod. Therefore, the involvement of multiple CYP450 isoforms reduces the likelihood of drug-drug interactions when only a single CYP450 isoform is strongly or moderately inhibited by a coadministered drug. In clinical drug interaction studies, when etrasimod was administered with the dual moderate CYP450 2C9 and 3A4 inhibitor fluconazole at steady-state levels, etrasimod systemic exposure (AUC) increased by 84%. However, concomitant use with the potent CYP450 3A4 inhibitor itraconazole increased the AUC of etrasimod by 32%, which was not considered by the manufacturer to be clinically significant. The effect on etrasimod systemic exposure in CYP450 2C9 intermediate metabolizers treated with less potent CYP450 3A4 inhibitors is not known. Increased plasma concentrations of etrasimod may increase the risk of infection, bradyarrhythmia, AV conduction delays, elevated transaminase levels, and macular edema.
MANAGEMENT: Until further information is available, the consumption of grapefruit and grapefruit juice in combination with moderate to potent CYP450 2C8 inhibitors such as gemfibrozil should be avoided or limited during treatment with etrasimod in patients who are poor CYP450 2C9 metabolizers. Caution is recommended with grapefruit products consumption in patients who are intermediate CYP450 2C9 metabolizers. Patients should be advised to notify their physician if they experience potential adverse effects of etrasimod.
References (6)
- (2023) "Product Information. Velsipity (etrasimod)." Pfizer U.S. Pharmaceuticals Group
- Lee C, Taylor C, Tang Y, Caballero LV, shan k, Randle A, Grundy JS (2022) Effects of fluconazole, gemfibrozil, and rifampin on the pharmacokinetics, safety, and tolerability of etrasimod https://gut.bmj.com/content/71/Suppl_1/A142.1
- (2024) "Product Information. Velsipity (etrasimod)." Pfizer Australia Pty Ltd, pfpvelst11024
- (2024) "Product Information. Velsipity (etrasimod)." Pfizer U.S. Pharmaceuticals Group
- (2024) "Product Information. Velsipity (etrasimod)." Pfizer Canada ULC
- Harnik S, Ungar B, Loebstein R, Ben-Horin S (2024) "A Gastroenterologist's guide to drug interactions of small molecules for inflammatory bowel disease" United European Gastroenterol J, 12, p. 627-637
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.