Drug Interactions between ethinyl estradiol and hydrochlorothiazide / propranolol
This report displays the potential drug interactions for the following 2 drugs:
- ethinyl estradiol
- hydrochlorothiazide/propranolol
Interactions between your drugs
propranolol ethinyl estradiol
Applies to: hydrochlorothiazide / propranolol and ethinyl estradiol
MONITOR: Oral contraceptives containing ethinyl estradiol may interfere with the first-pass metabolism of certain beta-blockers and increase their plasma concentrations. In one study, young, healthy female subjects receiving a low-dose ethinyl estradiol oral contraceptive (OC) demonstrated higher plasma levels of metoprolol (100 mg), oxprenolol (80 mg), and propranolol (80 mg) following single-dose administration than control subjects who were not receiving an OC. Specifically, mean metoprolol peak plasma concentration (Cmax) and systemic exposure (AUC) were 36% and 71% higher, respectively, in OC users (n=12) than in non-users (n=11); mean oxprenolol Cmax and AUC were 6% and 26% higher, respectively, in OC users (n=7) than in non-users (n=8); and mean propranolol Cmax and AUC were 19% and 42% higher, respectively, in OC users (n=7) than in non-users (n=8). Only the difference in metoprolol AUC reached statistical significance, although the difference in propranolol AUC failed to reach significance by only a narrow margin.
MANAGEMENT: Pharmacologic effects including blood pressure and heart rate changes should be monitored more closely when metoprolol, oxprenolol, and propranolol are coadministered with ethinyl estradiol oral contraceptives, and dosage adjustments made as necessary.
References (8)
- Kendall MJ, Quarterman CP, Jack DB, Beeley L (1982) "Metoprolol pharmacokinetics and the oral contraceptive pill." Br J Clin Pharmacol, 14, p. 120-2
- Kendall MJ, Jack DB, Quarterman CP, Smith SR, Zaman R (1984) "Beta-adrenoceptor blocker pharmacokinetics and the oral contraceptive pill." Br J Clin Pharmacol, 17, s87-9
- Jack DB, Quarterman CP, Zaman R, Kendall MJ (1982) "Variability of beta-blocker pharmacokinetics in young volunteers." Eur J Clin Pharmacol, 23, p. 37-42
- (2002) "Product Information. Tenormin (atenolol)." ICN Pharmaceuticals Inc
- (2002) "Product Information. Corgard (nadolol)." Bristol-Myers Squibb
- (2001) "Product Information. Cartrol (carteolol)." Abbott Pharmaceutical
- (2001) "Product Information. Betapace (sotalol)." Berlex Laboratories
- Seffart G ed. (1991) "Drug Dosage in Renal Insufficiency." Dordrecht, South Holland, : Kluwer Academic Publishers
propranolol hydroCHLOROthiazide
Applies to: hydrochlorothiazide / propranolol and hydrochlorothiazide / propranolol
MONITOR: Although they are often combined in clinical practice, diuretics and beta-blockers may increase the risk of hyperglycemia and hypertriglyceridemia in some patients, especially in patients with diabetes or latent diabetes. In addition, the risk of QT interval prolongation and arrhythmias (e.g. torsades de pointes) due to sotalol may be increased by potassium-depleting diuretics.
MANAGEMENT: Monitoring of serum potassium levels, blood pressure, and blood glucose is recommended during coadministration. Patients should be advised to seek medical assistance if they experience dizziness, weakness, fainting, fast or irregular heartbeats, or loss of blood glucose control.
References (5)
- Dornhorst A, Powell SH, Pensky J (1985) "Aggravation by propranolol of hyperglycaemic effect of hydrochlorothiazide in type II diabetics without alteration of insulin secretion." Lancet, 1, p. 123-6
- Roux A, Le Liboux A, Delhotal B, Gaillot J, Flouvat B (1983) "Pharmacokinetics in man of acebutolol and hydrochlorothiazide as single agents and in combination." Eur J Clin Pharmacol, 24, p. 801-6
- Dean S, Kendall MJ, Potter S, Thompson MH, Jackson DA (1985) "Nadolol in combination with indapamide and xipamide in resistant hypertensives." Eur J Clin Pharmacol, 28, p. 29-33
- (2002) "Product Information. Lozol (indapamide)." Rhone Poulenc Rorer
- Marcy TR, Ripley TL (2006) "Aldosterone antagonists in the treatment of heart failure." Am J Health Syst Pharm, 63, p. 49-58
Drug and food interactions
propranolol food
Applies to: hydrochlorothiazide / propranolol
ADJUST DOSING INTERVAL: The bioavailability of propranolol may be enhanced by food.
MANAGEMENT: Patients may be instructed to take propranolol at the same time each day, preferably with or immediately following meals.
References (2)
- Olanoff LS, Walle T, Cowart TD, et al. (1986) "Food effects on propranolol systemic and oral clearance: support for a blood flow hypothesis." Clin Pharmacol Ther, 40, p. 408-14
- Byrne AJ, McNeil JJ, Harrison PM, Louis W, Tonkin AM, McLean AJ (1984) "Stable oral availability of sustained release propranolol when co-administered with hydralazine or food: evidence implicating substrate delivery rate as a determinant of presystemic drug interactions." Br J Clin Pharmacol, 17, s45-50
hydroCHLOROthiazide food
Applies to: hydrochlorothiazide / propranolol
MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.
MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients should also avoid driving or operating hazardous machinery until they know how the medications affect them.
References (10)
- Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
- Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
- Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
- Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
- Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
- Cerner Multum, Inc. "Australian Product Information."
- Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
- Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
- (2023) "Product Information. Buprenorphine (buprenorphine)." G.L. Pharma UK Ltd
- (2023) "Product Information. Temgesic (buprenorphine)." Reckitt Benckiser Pty Ltd
propranolol food
Applies to: hydrochlorothiazide / propranolol
ADJUST DOSING INTERVAL: Concurrent administration with calcium salts may decrease the oral bioavailability of atenolol and possibly other beta-blockers. The exact mechanism of interaction is unknown. In six healthy subjects, calcium 500 mg (as lactate, carbonate, and gluconate) reduced the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of atenolol (100 mg) by 51% and 32%, respectively. The elimination half-life increased by 44%. Twelve hours after the combination, beta-blocking activity (as indicated by inhibition of exercise tachycardia) was reduced compared to that with atenolol alone. However, during a 4-week treatment in six hypertensive patients, there was no difference in blood pressure values between treatments. The investigators suggest that prolongation of the elimination half-life induced by calcium coadministration may have led to atenolol cumulation during long-term dosing, which compensated for the reduced bioavailability.
MANAGEMENT: It may help to separate the administration times of beta-blockers and calcium products by at least 2 hours. Patients should be monitored for potentially diminished beta-blocking effects following the addition of calcium therapy.
References (1)
- Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E (1981) "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther, 30, p. 429-35
ethinyl estradiol food
Applies to: ethinyl estradiol
MONITOR: Coadministration of ethinyl estradiol may increase the plasma concentrations of drugs that are primarily metabolized by CYP450 1A2. In a study of 30 healthy volunteers administered the CYP450 1A2 substrate tizanidine, the systemic exposure (AUC) of tizanidine was 3.9 times greater in women using an oral contraceptive containing ethinyl estradiol.
MANAGEMENT: Patients should be monitored for increased adverse effects of the CYP450 1A2 substrate during concomitant use with ethinyl estradiol. Product labeling for the specific CYP450 1A2 substrate should be consulted for additional recommendations.
References (1)
- Granfors MT, Backman JT, Laitila J, Neuvonen PJ (2005) "Oral contraceptives containing ethinyl estradiol and gestodene markedly increase plasma concentrations and effects of tizanidine by inhibiting cytochrome P450 1A2." Clin Pharmacol Ther, 78, p. 400-11
propranolol food
Applies to: hydrochlorothiazide / propranolol
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
ethinyl estradiol food
Applies to: ethinyl estradiol
Coadministration with grapefruit juice may increase the bioavailability of oral estrogens. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. In a small, randomized, crossover study, the administration of ethinyl estradiol with grapefruit juice (compared to herbal tea) increased peak plasma drug concentration (Cmax) by 37% and area under the concentration-time curve (AUC) by 28%. Based on these findings, grapefruit juice is unlikely to affect the overall safety profile of ethinyl estradiol. However, as with other drug interactions involving grapefruit juice, the pharmacokinetic alterations are subject to a high degree of interpatient variability. Also, the effect on other estrogens has not been studied.
References (2)
- Weber A, Jager R, Borner A, et al. (1996) "Can grapefruit juice influence ethinyl estradiol bioavailability?" Contraception, 53, p. 41-7
- Schubert W, Eriksson U, Edgar B, Cullberg G, Hedner T (1995) "Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17B-estradiol." Eur J Drug Metab Pharmacokinet, 20, p. 219-24
ethinyl estradiol food
Applies to: ethinyl estradiol
The central nervous system effects and blood levels of ethanol may be increased in patients taking oral contraceptives, although data are lacking and reports are contradictory. The mechanism may be due to enzyme inhibition. Consider counseling women about this interaction which is unpredictable.
References (1)
- Hobbes J, Boutagy J, Shenfield GM (1985) "Interactions between ethanol and oral contraceptive steroids." Clin Pharmacol Ther, 38, p. 371-80
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.