Skip to main content

Drug Interactions between esmolol and metformin / repaglinide

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

esmolol repaglinide

Applies to: esmolol and metformin / repaglinide

MONITOR: Beta-blockers may inhibit some of the normal physiologic response to hypoglycemia. Symptoms of hypoglycemia such as tremor and tachycardia may be absent, making it more difficult for patients to recognize an oncoming episode. In addition, multiple effects on glucose metabolism have been reported, usually with the noncardioselective beta-blockers (e.g., propranolol, pindolol, timolol) but occasionally also with relatively beta-1 selective agents (e.g., atenolol, metoprolol, nebivolol). Specifically, inhibition of catecholamine-mediated glycogenolysis and glucose mobilization in association with beta-blockade can potentiate insulin-induced hypoglycemia in diabetics and delay the recovery of normal blood glucose levels. Prolonged and severe hypoglycemia may occur, although these events have rarely been reported. Significant increases in blood pressure and bradycardia can also occur during hypoglycemia in diabetics treated with insulin and beta-blockers due to antagonism of epinephrine's effect on beta-2 adrenergic receptors, which leads to unopposed alpha-adrenergic effects including vasoconstriction. Other effects reported with various beta-blockers include decreased glucose tolerance and decreased glucose-induced insulin secretion.

MANAGEMENT: In general, cardioselective beta-blockers are considered safer than noncardioselective agents in the treatment of diabetic patients. Nevertheless, caution is advised if they are prescribed to patients treated with insulin or oral antidiabetic agents that can cause hypoglycemia (e.g., insulin secretagogues), as cardioselectivity is not absolute and larger doses of beta-1 selective agents may pose some of the same risks as nonselective agents. Patients should be advised of the need for regular blood glucose monitoring and be aware that certain symptoms of hypoglycemia such as tremor and tachycardia may be masked. However, other symptoms such as headache, dizziness, drowsiness, confusion, nausea, hunger, weakness, and perspiration may be unaffected. The same precautions are applicable in diabetic patients treated with ophthalmic beta-blockers.

References

  1. Shepherd AM, Lin M-S, Keeton TK (1981) "Hypoglycemia-induced hypertension in a diabetic patient on metoprolol." Ann Intern Med, 94, p. 357-8
  2. Micossi P, Pollavini G, Raggi U, et al. (1984) "Effects of metoprolol and propranolol on glucose tolerance and insulin secretion in diabetes mellitus." Horm Metab Res, 16, p. 59-63
  3. Popp DA, Tse TF, Shah SD, et al. (1984) "Oral propranolol and metoprolol both impair glucose recovery from insulin-induced hypoglycemia in insulin-dependent diabetes mellitus." Diabetes Care, 7, p. 243-7
  4. Mann SJ, Krakoff LR (1984) "Hypertensive crisis caused by hypoglycemia and propranolol." Arch Intern Med, 144, p. 2427-8
  5. Groop L, Totterman KJ, Harno K, Gordin A (1982) "Influence of beta-blocking drugs on glucose metabolism in patients with non-insulin dependent diabetes mellitus." Acta Med Scand, 211, p. 7-12
  6. Viberti GC, Keen H, Bloom SR (1980) "Beta blockade and diabetes mellitus: effect of oxprenolol and metoprolol on the metabolic, cardiovascular, and hormonal response to insulin-induced hypoglycemia in insulin-dependent diabetics." Metabolism, 29, p. 873-9
  7. Viberti GC, Keen H, Bloom SR (1980) "Beta blockade and diabetes mellitus: effect of oxprenolol and metoprolol on the metabolic, cardiovascular, and hormonal response to insulin-induced hypoglycemia in normal subjects." Metabolism, 29, p. 866-72
  8. Newman RJ (1976) "Comparison of propranolol, metoprolol, and acebutolol on insulin-induced hypoglycaemia." Br Med J, 2, p. 447-9
  9. Smith U (1978) "Beta blockade in diabetes." N Engl J Med, 299, p. 1467
  10. Zaman R, Kendall MJ, Biggs PI (1982) "The effect of acebutolol and propranolol on the hypoglycaemic action of glibenclamide." Br J Clin Pharmacol, 13, p. 507-12
  11. Munroe WP, Rindone JP, Kershner RM (1985) "Systemic side effects associated with the ophthalmic administratiion of timolol." Drug Intell Clin Pharm, 19, p. 85-9
  12. Ostman J (1983) "B-adrenergic blockade and diabetes mellitus." Acta Med Scand, 672, p. 69-77
  13. Deacon SP, Karunanayake A, Barnett D (1977) "Acebutolol, atenolol, and propranolol and metabolic responses to acute hypoglycaemia in diabetes." Br Med J, 12, p. 1255-7
  14. Pollare T, Lithell H, Selinus I, Berne C (1989) "Sensitivity to insulin during treatment with atenolol and metoprolol: a randomised, double blind study of effects on carbohydrate and lipoprotein metabolism in hypertensive patients." BMJ, 298, p. 1152-7
  15. Sinclair AJ, Davies IB, Warrington SJ (1990) "Betaxolol and glucose-insulin relationships: studies in normal subjects taking glibenclamide or metformin." Br J Clin Pharmacol, 30, p. 699-702
  16. (1975) "New Zealand Committee on Adverse Drug Reactions. Ninth Annual Report." N Z Dent J, 71, p. 28-32
View all 16 references

Switch to consumer interaction data

Moderate

metFORMIN repaglinide

Applies to: metformin / repaglinide and metformin / repaglinide

MONITOR: Coadministration of metformin with an insulin secretagogue (e.g., sulfonylurea, meglitinide) or insulin may potentiate the risk of hypoglycemia. Although metformin alone generally does not cause hypoglycemia under normal circumstances of use, the added therapeutic effect when combined with other antidiabetic agents may result in hypoglycemia. The risk is further increased when caloric intake is deficient or when strenuous exercise is not compensated by caloric supplementation.

MANAGEMENT: A lower dosage of the insulin secretagogue or insulin may be required when used with metformin. Blood glucose should be closely monitored, and patients should be educated on the potential signs and symptoms of hypoglycemia (e.g., headache, dizziness, drowsiness, nervousness, confusion, tremor, hunger, weakness, perspiration, palpitation, tachycardia) and appropriate remedial actions to take if it occurs. Patients should also be advised to take precautions to avoid hypoglycemia while driving or operating hazardous machinery.

References

  1. Wiernsperger N, Rapin JR (1995) "Metformin-insulin interactions: from organ to cell." Diabetes Metab Rev, 11 Suppl, s3-12
  2. Okada S, Ishii K, Hamada H, Tanokuchi S, Ichiki K, Ota Z (1995) "Can alpha-glucosidase inhibitors reduce the insulin dosage administered to patients with non-insulin-dependent diabetes mellitus?" J Int Med Res, 23, p. 487-91

Switch to consumer interaction data

Drug and food interactions

Major

metFORMIN food

Applies to: metformin / repaglinide

GENERALLY AVOID: Alcohol can potentiate the effect of metformin on lactate metabolism and increase the risk of lactic acidosis. In addition, alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Although hypoglycemia rarely occurs during treatment with metformin alone, the risk may increase with acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes.

Food may have varying effects on the absorption of metformin from immediate-release versus extended-release formulations. When a single 850 mg dose of immediate-release metformin was administered with food, mean peak plasma concentration (Cmax) and systemic exposure (AUC) decreased by 40% and 25%, respectively, and time to peak plasma concentration (Tmax) increased by 35 minutes compared to administration under fasting conditions. By contrast, administration of extended-release metformin with food increased AUC by 50% without affecting Cmax or Tmax, and both high- and low-fat meals had the same effect. These data may not be applicable to formulations that contain metformin with other oral antidiabetic agents.

MANAGEMENT: Metformin should be taken with meals, and excessive alcohol intake should be avoided during treatment. Diabetes patients in general should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Alcohol should not be consumed on an empty stomach or following exercise, as it may increase the risk of hypoglycemia. Patients should contact their physician immediately if they experience potential signs and symptoms of lactic acidosis such as malaise, myalgia, respiratory distress, increasing somnolence, and nonspecific abdominal distress (especially after stabilization of metformin therapy, when gastrointestinal symptoms are uncommon). With more marked acidosis, there may also be associated hypothermia, hypotension, and resistant bradyarrhythmias. Metformin should be withdrawn promptly if lactic acidosis is suspected. Serum electrolytes, ketones, blood glucose, blood pH, lactate levels, and blood metformin levels may be useful in establishing a diagnosis. Lactic acidosis should be suspected in any diabetic patient with metabolic acidosis lacking evidence of ketoacidosis (ketonuria and ketonemia).

References

  1. (2001) "Product Information. Glucophage (metformin)." Bristol-Myers Squibb
  2. (2002) "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care, 25(Suppl 1), S50-S60

Switch to consumer interaction data

Moderate

repaglinide food

Applies to: metformin / repaglinide

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  4. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  22. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  23. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  25. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  32. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Moderate

esmolol food

Applies to: esmolol

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.