Skip to main content

Drug Interactions between Ergocaf-PB and erlotinib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

ergotamine PENTobarbital

Applies to: Ergocaf-PB (belladonna / caffeine / ergotamine / pentobarbital) and Ergocaf-PB (belladonna / caffeine / ergotamine / pentobarbital)

MONITOR: Coadministration with inducers of CYP450 3A4 may decrease the plasma concentrations of ergot alkaloids, which are substrates of the isoenzyme.

MANAGEMENT: The potential for diminished pharmacologic effects of ergot alkaloids should be considered during coadministration with CYP450 3A4 inducers. Alternative treatments may be required if an interaction is suspected.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  2. Cerner Multum, Inc. "Australian Product Information." O 0
  3. "Product Information. Methergine (methylergonovine)." Novartis Pharmaceuticals (2010):

Switch to consumer interaction data

Moderate

PENTobarbital erlotinib

Applies to: Ergocaf-PB (belladonna / caffeine / ergotamine / pentobarbital) and erlotinib

MONITOR: Coadministration with inducers of CYP450 3A4 may decrease the plasma concentrations of erlotinib, which has been shown in vitro to be primarily metabolized by CYP450 3A4 (approximately 80% to 95%) and to a lesser extent by CYP450 1A2. According to the product labeling, erlotinib systemic exposure (AUC) was reduced in the presence of the potent inducer rifampin by 58% to 80%, which is equivalent to a dose of about 30 to 63 mg in lung cancer patients. In one study, pretreatment with rifampin 600 mg daily for 7 days prior to administration of a single 150 mg erlotinib dose increased clearance of erlotinib by 3-fold and reduced median AUC by 69% compared to erlotinib administered alone. In another study, pretreatment with rifampin for 11 days followed by a single 450 mg dose of erlotinib on day 8 resulted in a mean erlotinib AUC that was just 58% of that observed following a single 150 mg dose of erlotinib in the absence of rifampin treatment. Systemic exposure of the active metabolites of erlotinib (OSI-413 and OSI-420) was largely unaffected by rifampin. Consequently, the active metabolites represented 18% of the total erlotinib exposure following coadministration with rifampin relative to only 5% when erlotinib was given alone. No data are available for use with other, less potent CYP450 3A4 inducers.

MANAGEMENT: The potential for diminished pharmacologic effects of erlotinib should be considered during coadministration with CYP450 3A4 inducers. Pharmacologic response to erlotinib should be monitored more closely whenever a CYP450 3A4 inducer is added to or withdrawn from therapy, and the erlotinib dosage adjusted as necessary.

References

  1. Li J, Zhao M, He P, Hidalgo M, Baker SD "Differential metabolism of gefitinib and erlotinib by human cytochrome p450 enzymes." Clin Cancer Res 13 (2007): 3731-7
  2. "Product Information. Tarceva (erlotinib)." Genentech (2018):
  3. "Product Information. Tarceva (erlotinib)." Hoffmann-La Roche Limited (2018):
  4. "Product Information. Tarceva (erlotinib)." Roche Products Ltd (2022):
  5. "Product Information. Tarceva (erlotinib)." Roche Products Pty Ltd (2022):
  6. Hamilton M, Wolf JL, Drolet DW, et al. "The effect of rifampicin, a prototypical CYP3A4 inducer, on erlotinib pharmacokinetics in healthy subjects" Cancer Chemother Pharmacol 73 (2014): 613-21
View all 6 references

Switch to consumer interaction data

Drug and food interactions

Major

PENTobarbital food

Applies to: Ergocaf-PB (belladonna / caffeine / ergotamine / pentobarbital)

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References

  1. Gupta RC, Kofoed J "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J 94 (1966): 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med 51 (1971): 346-51
  3. Saario I, Linnoila M "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh) 38 (1976): 382-92
  4. Stead AH, Moffat AC "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol 2 (1983): 5-14
  5. Seixas FA "Drug/alcohol interactions: avert potential dangers." Geriatrics 34 (1979): 89-102
View all 5 references

Switch to consumer interaction data

Moderate

ergotamine food

Applies to: Ergocaf-PB (belladonna / caffeine / ergotamine / pentobarbital)

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther 49 (1991): 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  4. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie 49 (1994): 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  8. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther 58 (1995): 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol 36 (1996): 469-76
  11. Majeed A, Kareem A "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol 10 (1996): 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol 42 (1996): p662
  13. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther 63 (1998): 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet 23 (1998): 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther 64 (1998): 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther 64 (1998): 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  22. Eagling VA, Profit L, Back DJ "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol 48 (1999): 543-52
  23. Damkier P, Hansen LL, Brosen K "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol 48 (1999): 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther 21 (1999): 1890-9
  25. Dresser GK, Spence JD, Bailey DG "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet 38 (2000): 41-57
  26. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol 49 (2000): 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit 23 (2001): 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol 44 (1993): 295-8
  32. Flanagan D "Understanding the grapefruit-drug interaction." Gen Dent 53 (2005): 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Moderate

erlotinib food

Applies to: erlotinib

GENERALLY AVOID: Grapefruit and grapefruit juice may increase the plasma concentrations of erlotinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for ketoconazole, a potent CYP450 3A4 inhibitor that increased erlotinib systemic exposure (AUC) by 67%. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition.

GENERALLY AVOID: Cigarette smoking reduces erlotinib exposure due to induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of erlotinib. Induction of CYP450 1A1 in the lungs may also contribute. In one pharmacokinetic study of healthy subjects given a single 150 mg dose of erlotinib, mean erlotinib peak plasma concentration (Cmax), systemic exposure (AUC) and plasma concentration at 24 hours were decreased by 35%, 64% and 88%, respectively, in current smokers compared to former/never smokers. Likewise, in a phase 3 non-small cell lung cancer (NSCLC) trial, the steady-state trough plasma concentrations of erlotinib in current smokers were approximately 2-fold less than in former/never smokers, accompanied by a 24% increase in apparent erlotinib plasma clearance. In a phase 1 dose-escalation study that analyzed the steady-state pharmacokinetics of erlotinib in current smokers with NSCLC, there was a dose-proportional increase in erlotinib exposure when the dose was increased from 150 mg to 300 mg, the maximum tolerated dose in the study population. Median steady-state trough plasma concentration at the 300 mg dose was approximately 3-fold higher than at the 150 mg dose. The clinical impact of smoking on erlotinib efficacy has not been studied.

ADJUST DOSING INTERVAL: Food enhances the oral absorption of erlotinib. According to the product labeling, administration with food increased the oral bioavailability of erlotinib from approximately 60% to almost 100% compared to administration in the fasting state.

MANAGEMENT: Consumption of grapefruit and grapefruit juice should be avoided or limited during treatment with erlotinib. Patients who currently smoke cigarettes are advised to stop smoking as soon as possible. If cigarette smoking is continued while taking erlotinib, the manufacturer recommends increasing the dosage of erlotinib by 50 mg increments at 2-week intervals up to a maximum of 300 mg as tolerated. However, the efficacy and long-term safety of dosages higher than 150 mg daily have not been established. Data from a double-blind, randomized phase 3 study (MO22162, CURRENTS) demonstrated no benefit in progression free survival or overall survival with an erlotinib dosage of 300 mg daily relative to the recommended dosage of 150 mg daily in active smokers (average of 38 pack years) with locally advanced or metastatic NSCLC who have failed chemotherapy, although patients in the study were not selected based on epidermal growth factor receptor (EGFR) mutation status. Safety data were comparable between the two dosages, but a numerical increase in the incidence of rash, interstitial lung disease and diarrhea was observed with the higher dosage. Patients who have received a dosage increase should immediately revert to the recommended dosage of 150 mg or 100 mg once daily (depending on indication) upon cessation of smoking. Erlotinib should be administered on an empty stomach at least one hour before or two hours after the ingestion of food.

References

  1. "Product Information. Tarceva (erlotinib)." Genentech (2018):
  2. "Product Information. Tarceva (erlotinib)." Hoffmann-La Roche Limited (2018):
  3. "Product Information. Tarceva (erlotinib)." Roche Products Ltd (2022):
  4. "Product Information. Tarceva (erlotinib)." Roche Products Pty Ltd (2022):
View all 4 references

Switch to consumer interaction data

Moderate

belladonna food

Applies to: Ergocaf-PB (belladonna / caffeine / ergotamine / pentobarbital)

GENERALLY AVOID: Use of anticholinergic agents with alcohol may result in sufficient impairment of attention so as to render driving and operating machinery more hazardous. In addition, the potential for abuse may be increased with the combination. The mechanism of interaction is not established but may involve additive depressant effects on the central nervous system. No effect of oral propantheline or atropine on blood alcohol levels was observed in healthy volunteers when administered before ingestion of a standard ethanol load. However, one study found impairment of attention in subjects given atropine 0.5 mg or glycopyrrolate 1 mg in combination with alcohol.

MANAGEMENT: Alcohol should generally be avoided during therapy with anticholinergic agents. Patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them.

References

  1. Linnoila M "Drug effects on psychomotor skills related to driving: interaction of atropine, glycopyrrhonium and alcohol." Eur J Clin Pharmacol 6 (1973): 107-12

Switch to consumer interaction data

Moderate

ergotamine food

Applies to: Ergocaf-PB (belladonna / caffeine / ergotamine / pentobarbital)

MONITOR: Nicotine may cause vasoconstriction in some patients and potentiate the ischemic response to ergot alkaloids.

MANAGEMENT: Caution may be advisable when ergot alkaloids are used in combination with nicotine products. Patients should be advised to seek immediate medical attention if they experience potential symptoms of ischemia such as coldness, pallor, cyanosis, numbness, tingling, or pain in the extremities; muscle weakness; severe or worsening headache; visual disturbances; severe abdominal pain; chest pain; and shortness of breath.

References

  1. "Product Information. Migranal (dihydroergotamine nasal)." Novartis Pharmaceuticals PROD (2001):
  2. "Product Information. Cafergot (caffeine-ergotamine)." Novartis Pharmaceuticals (2004):
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  4. Cerner Multum, Inc. "Australian Product Information." O 0
View all 4 references

Switch to consumer interaction data

Minor

caffeine food

Applies to: Ergocaf-PB (belladonna / caffeine / ergotamine / pentobarbital)

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References

  1. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy 16 (1996): 1046-52

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.