Skip to main content

Drug Interactions between Empirin with Codeine and naproxen / sumatriptan

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

naproxen aspirin

Applies to: naproxen / sumatriptan and Empirin with Codeine (aspirin / codeine)

GENERALLY AVOID: The antiplatelet and cardioprotective effect of low-dose aspirin may be antagonized by coadministration of some nonsteroidal anti-inflammatory drugs (NSAIDs). Ibuprofen has been specifically implicated, and there is evidence that others including indomethacin, naproxen, and tiaprofenic acid may also interact. The mechanism is competitive inhibition of platelet cyclooxygenase by certain NSAIDs, which, unlike aspirin, bind reversibly at the active site of the enzyme and cause a temporary rather than persistent depression of thromboxane formation and thromboxane-dependent platelet function. Unpublished single-dose trials with ibuprofen 400 mg indicate that interference with aspirin's antiplatelet activity, as measured by thromboxane B2 (TXB2) levels and platelet activation studies, occurs when ibuprofen is taken within 8 hours before or 30 minutes after dosing of immediate-release aspirin. One study showed that the antiplatelet effect of enteric-coated low-dose aspirin is attenuated when ibuprofen 400 mg is dosed 2, 7, and 12 hours after aspirin. In contrast, a placebo-controlled study found no clinically significant reduction of TXB2 inhibition when ibuprofen (400 mg three times a day) was coadministered with chewable, immediate-release aspirin (81 mg once a day) for 10 days in healthy volunteers. There are no clinical endpoint studies conducted specifically to evaluate the interaction. A retrospective study of 7107 heart patients discharged from hospitals between 1989 and 1997 with aspirin prescriptions found that those also taking ibuprofen were twice as likely to die during the study period as those taking aspirin alone or with other NSAIDs or acetaminophen. That translates to 12 extra deaths (3 heart-related deaths) a year for every 1000 patients treated. A subgroup analysis from a 5-year randomized, double-blind, placebo-controlled trial of 325 mg aspirin use on alternate days among 22,071 apparently healthy U.S. male physicians with prospective observational data on use of NSAIDs found that regular (>= 60 days/year) but not intermittent (1 to 59 days/year) use of NSAIDs inhibited the clinical benefits of aspirin on first myocardial infarction (MI). Specifically, regular users of NSAIDs in the aspirin group had a greater than 2-fold increased risk of MI, while regular users of NSAIDs in the placebo group had a nonsignificantly reduced risk of MI. There was no association between intermittent use of NSAIDs and subsequent development of MI among aspirin or placebo recipients.

MONITOR: The combined use of aspirin with NSAIDs in general may increase the potential for serious gastrointestinal (GI) toxicity, including inflammation, bleeding, ulceration, and perforation. Pharmacokinetically, aspirin at anti-inflammatory dosages or higher has been shown to decrease the plasma concentrations of many NSAIDs, including indomethacin and naproxen.

MANAGEMENT: Until more information is available, patients receiving low-dose aspirin for cardioprotection should avoid the regular use of NSAIDs including ibuprofen, indomethacin, naproxen, and tiaprofenic acid. Occasional, single use may be acceptable, as the risk from any attenuation of the antiplatelet effect of low-dose aspirin is likely to be minimal given the long-lasting effect of aspirin on platelets. If routine NSAID therapy is necessary, diclofenac may be a viable alternative. In the retrospective study implicating ibuprofen, 75 mg twice daily of delayed-release diclofenac did not interfere with the antiplatelet activity of aspirin. Other noninterfering alternatives for pain include acetaminophen, celecoxib, or narcotic analgesics. In any case, caution is advised whenever aspirin is combined with a NSAID due to the potential for additive GI toxicity. Patients should be advised to take the medications with food and to immediately report signs and symptoms of GI ulceration and bleeding such as abdominal pain, bloating, sudden dizziness or lightheadedness, nausea, vomiting, hematemesis, anorexia, and melena.

References

  1. Livio M, Del Maschio A, Cerletti C, de Gaetano G (1982) "Indomethacin prevents the long-lasting inhibitory effect of aspirin on human platelet cyclo-oxygenase activity." Prostaglandins, 23, p. 787-96
  2. Furst DE, Sarkissian E, Blocka K, et al. (1987) "Serum concentrations of salicylate and naproxen during concurrent therapy in patients with rheumatoid arthritis." Arthritis Rheum, 30, p. 1157-61
  3. Kwan KC, Breault GO, Davis RL, et al. (1978) "Effects of concomitant aspirin administration on the pharmacokinetics of indomethacin in man." J Pharmacokinet Biopharm, 6, p. 451-76
  4. Rubin A, Rodda BE, Warrick P, Gruber CM Jr, Ridolfo RS (1973) "Interactions of aspirin with nonsteroidal antiinflammatory drugs in man." Arthritis Rheum, 16, p. 635-45
  5. Brooks PM, Walker JJ, Bell MA, Buchanan WW, Rhymer AR (1975) "Indomethacin--aspirin interaction: a clinical appraisal." Br Med J, 3, p. 69-11
  6. Muller FO, Hundt HK, Muller DG (1977) "Pharmacokinetic and pharmacodynamic implications of long-term administration of non-steroidal anti-inflammatory agents." Int J Clin Pharmacol Biopharm, 15, p. 397-402
  7. Pawlotsky Y, Chales G, Grosbois B, Miane B, Bourel M (1978) "Comparative interaction of aspirin with indomethacin and sulindac in chronic rheumatic diseases." Eur J Rheumatol Inflamm, 1, p. 18-20
  8. Segre EJ, Chaplin M, Forchielli E, Runkel R, Sevelius H (1973) "Naproxen-aspirin interactions in man." Clin Pharmacol Ther, 15, p. 374-9
  9. Grennan DM, Ferry DG, Ashworth ME, Kenny RE, Mackinnnon M (1979) "The aspirin-ibuprofen interaction in rheumatoid arthritis." Br J Clin Pharmacol, 8, p. 497-503
  10. Schafer AI (1995) "Effects of nonsteroidal antiinflammatory drugs on platelet function and systemic hemostasis." J Clin Pharmacol, 35, p. 209-19
  11. Catella-Lawson F, Reilly MP, Kapoor SC, et al. (2001) "Cyclooxygenase inhibitors and the antiplatelet effects of aspirin." N Engl J Med, 345, p. 1809-17
  12. Wilner KD, Rushing M, Walden C, et al. (2002) "Celecoxib does not affect the antiplatelet activity of aspirin in healthy volunteers." J Clin Pharmacol, 42, p. 1027-30
  13. MacDonald TM, Wei L (2003) "Effect of ibuprofen on cardioprotective effect of aspirin." Lancet, 361, p. 573-4
  14. Kurth T, Glynn RJ, Walker AM, et al. (2003) "Inhibition of clinical benefits of aspirin on first myocardial infarction by nonsteroidal antiinflammatory drugs." Circulation, 108, p. 1191-5
  15. Bates ER, Mukherjee D, Lau WC (2003) "Drug-drug interactions involving antiplatelet agents." Eur Heart J, 24, p. 1707-9
  16. Kimmel SE, Berlin JA, Reilly M, et al. (2004) "The effects of nonselective non-aspirin non-steroidal anti-inflammatory medications on the risk of nonfatal myocardial infarction and their interaction with aspirin." J Am Coll Cardiol, 43, p. 985-90
  17. Cryer B, Berlin RG, Cooper SA, Hsu C, Wason S (2005) "Double-blind, randomized, parallel, placebo-controlled study of ibuprofen effects on thromboxane B(2) concentrations in aspirin-tereated healthy adult volunteers." Clin Ther, 27, p. 185-91
  18. Capone ML, Sciulli MG, Tacconelli S, et al. (2005) "Pharmacodynamic interaction of naproxen with low-dose aspirin in healthy subjects." J Am Coll Cardiol, 45, p. 1295-301
  19. (2007) "Concomitant use of ibuprofen and aspirin." J Pain Palliat Care Pharmacother, 21, p. 73-4
  20. Gladding PA, Webster MW, Farrell HB, Zeng IS, Park R, Ruijne N (2008) "The antiplatelet effect of six non-steroidal anti-inflammatory drugs and their pharmacodynamic interaction with aspirin in healthy volunteers." Am J Cardiol, 101, p. 1060-3
  21. FDA. U.S. Food and Drug Administration (2010) Information for healthcare professionals: concomitant use of ibuprofen and aspirin. New information [9/2006] - concomitant use of ibuprofen and aspirin. http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm125222.
  22. Rao GH, Johnson GG, Reddy KR, White JG (1983) "Ibuprofen protects platelet cycloosygenase from irreversible inhibition by aspirin." Arteriosclerosis, 3, p. 383-8
View all 22 references

Switch to consumer interaction data

Moderate

codeine SUMAtriptan

Applies to: Empirin with Codeine (aspirin / codeine) and naproxen / sumatriptan

MONITOR: Opioids may potentiate the effects of serotonergic agents and increase the risk of serotonin syndrome. The interaction has primarily been reported with the phenylpiperidine opioids (e.g., meperidine, fentanyl) and tramadol, which are known to possess some serotonergic activity, although a few cases have involved other opioids such as oxycodone, methadone, morphine, hydromorphone, codeine, and buprenorphine. Serotonin syndrome is a rare but serious and potentially fatal condition thought to result from hyperstimulation of brainstem 5-HT1A and 2A receptors. Symptoms of the serotonin syndrome may include mental status changes such as irritability, altered consciousness, confusion, hallucinations, and coma; autonomic dysfunction such as tachycardia, hyperthermia, diaphoresis, shivering, blood pressure lability, and mydriasis; neuromuscular abnormalities such as hyperreflexia, myoclonus, tremor, rigidity, and ataxia; and gastrointestinal symptoms such as abdominal cramping, nausea, vomiting, and diarrhea. Since many serotonergic agents can also cause central nervous system depression, concomitant use with opioids may result in increased sedation and impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Caution is advised when opioids are used concomitantly with serotonergic agents such as selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), other antidepressants/psychotropic agents (e.g., amoxapine, buspirone, lithium, maprotiline, mirtazepine, nefazodone, trazodone, vilazodone), 5-HT1 receptor agonists (triptans), 5-HT3 receptor antagonists, cyclobenzaprine, dextromethorphan, 5-hydroxytryptophan, and St. John's wort. Patients should be monitored for symptoms of the serotonin syndrome during treatment. Particular caution is advised when increasing the dosages of these agents. If serotonin syndrome develops or is suspected during the course of therapy, all serotonergic agents should be discontinued immediately and supportive care rendered as necessary. Moderately ill patients may also benefit from the administration of a serotonin antagonist (e.g., cyproheptadine, chlorpromazine). Severe cases should be managed under consultation with a toxicologist and may require sedation, neuromuscular paralysis, intubation, and mechanical ventilation in addition to the other measures. Patients should also be advised of potentially additive central nervous system effects from these agents and to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them.

References

  1. Meyer D, Halfin V (1981) "Toxicity secondary to meperidine in patients on monoamine oxidase inhibitors: a case report and critical review." J Clin Psychopharmacol, 1, p. 319-21
  2. Zornberg GL, Bodkin JA, Cohen BM (1991) "Severe adverse interaction between pethidine and selegiline." Lancet, 337, p. 246
  3. Hansen TE, Dieter K, Keepers GA (1990) "Interaction of fluoxetine and pentazocine." Am J Psychiatry, 147, p. 949-50
  4. Sternbach H (1991) "The serotonin syndrome." Am J Psychiatry, 148, p. 705-13
  5. Noble WH, Baker A (1992) "MAO inhibitors and coronary artery surgery: a patient death." Can J Anaesth, 39, p. 1061-6
  6. Insler SR, Kraenzler EJ, Licina MG, Savage RM, Starr NJ (1994) "Cardiac surgery in a patient taking monoamine oxidase inhibitors - an adverse fentanyl reaction." Anesth Analg, 78, p. 593-7
  7. Mason BJ, Blackburn KH (1997) "Possible serotonin syndrome associated with tramadol and sertraline coadministration." Ann Pharmacother, 31, p. 175-7
  8. Mills KC (1997) "Serotonin syndrome: A clinical update." Crit Care Clin, 13, p. 763
  9. Chan BSH, Graudins A, Whyte IM, Dawson AH, Braitberg G, Duggin GG (1998) "Serotonin syndrome resulting from drug interactions." Med J Aust, 169, p. 523-5
  10. Egberts AC, ter Borg J, Brodie-Meijer CC (1997) "Serotonin syndrome attributed to tramadol addition to paroxetine therapy." Int Clin Psychopharmacol, 12, p. 181-2
  11. Rosebraugh CJ, floxkhart DA, Yasuda SU, Woosley RL (2001) "Visual hallucination and tremor induced by sertraline and oxycodone in a bone marrow transplant patient." J Clin Pharmacol, 41, p. 224-7
  12. Lange-Asschenfeldt C, Weigmann H, Hiemke C, Mann K (2002) "Serotonin syndrome as a result of fluoxetine in a patient with tramadol abuse: plasma level-correlated symptomatology." J Clin Psychopharmacol, 22, p. 440-1
  13. Kesavan S, Sobala GM (1999) "Serotonin syndrome with fluoxetine plus tramadol." J R Soc Med, 92, p. 474-5
  14. Gonzalez-Pinto A, Imaz H, De Heredia JL, Gutierrez M, Mico JA (2001) "Mania and tramadol-fluoxetine combination." Am J Psychiatry, 158, p. 964-5
  15. Dougherty JA, Young H, Shafi T (2002) "Serotonin syndrome induced by amitriptyline, meperidine, and venlafaxine." Ann Pharmacother, 36, p. 1647-1648
  16. Martin TG (1996) "Serotonin syndrome." Ann Emerg Med, 28, p. 520-6
  17. Tissot TA (2003) "Probable meperidine-induced serotonin syndrome in a patient with a history of fluoxetine use." Anesthesiology, 98, p. 1511-1512
  18. Roy S, Fortier LP (2003) "Fentanyl-induced rigidity during emergence from general anesthesia potentiated by venlafexine." Can J Anaesth, 50, p. 32-5
  19. Gillman PK (1995) "Possible serotonin syndrome with moclobemide and pethidine." Med J Aust, 162, p. 554
  20. Houlihan DJ (2004) "Serotonin syndrome resulting from coadministration of tramadol, venlafaxine, and mirtazapine." Ann Pharmacother, 38, p. 411-3
  21. (2004) "Venlafaxine + tramadol: serotonin syndrome." Prescrire Int, 13, p. 57
  22. Mahlberg R, Kunz D, Sasse J, Kirchheiner J (2004) "Serotonin syndrome with tramadol and citalopram." Am J Psychiatry, 161, p. 1129
  23. Mittino D, Mula M, Monaco F (2004) "Serotonin syndrome associated with tramadol-sertraline coadministration." Clin Neuropharmacol, 27, p. 150-1
  24. Lantz MS, Buchalter EN, Giambanco V (1998) "Serotonin syndrome following the administration of tramadol with paroxetine." Int J Geriatr Psychiatry, 13, p. 343-5
  25. Gillman PK (2005) "Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity." Br J Anaesth
  26. Kitson R, Carr B (2005) "Tramadol and severe serotonin syndrome." Anaesthesia, 60, p. 934-5
  27. Gnanadesigan N, Espinoza RT, Smith R, Israel M, Reuben DB (2005) "Interaction of serotonergic antidepressants and opioid analgesics: Is serotonin syndrome going undetected?" J Am Med Dir Assoc, 6, p. 265-9
  28. Hunter B, Kleinert MM, Osatnik J, Soria E (2006) "Serotonergic syndrome and abnormal ocular movements: worsening of rigidity by remifentanil?" Anesth Analg, 102, p. 1589
  29. Ailawadhi S, Sung KW, Carlson LA, Baer MR (2007) "Serotonin syndrome caused by interaction between citalopram and fentanyl." J Clin Pharm Ther, 32, p. 199-202
  30. Vizcaychipi MP, Walker S, Palazzo M (2007) "Serotonin syndrome triggered by tramadol." Br J Anaesth, 99, p. 919
  31. Das PK, Warkentin DI, Hewko R, Forrest DL (2008) "Serotonin syndrome after concomitant treatment with linezolid and meperidine." Clin Infect Dis, 46, p. 264-5
  32. Rang ST, Field J, Irving C (2008) "Serotonin toxicity caused by an interaction between fentanyl and paroxetine." Can J Anaesth, 55, p. 521-5
  33. Guo SL, Wu TJ, Liu CC, Ng CC, Chien CC, Sun HL (2009) "Meperidine-induced serotonin syndrome in a susceptible patient." Br J Anaesth
  34. Davis JJ, Buck NS, Swenson JD, Johnson KB, Greis PE (2013) "Serotonin syndrome manifesting as patient movement during total intravenous anesthesia with propofol and remifentanil." J Clin Anesth, 25, p. 52-4
  35. Hillman AD, Witenko CJ, Sultan SM, Gala G (2015) "Serotonin syndrome caused by fentanyl and methadone in a burn injury." Pharmacotherapy, 35, p. 112-7
  36. Mateo-Carrasco H, Munoz-Aguilera EM, Garcia-Torrecillas JM, Abu Al-Robb H (2015) "Serotonin syndrome probably triggered by a morphine-phenelzine interaction." Pharmacotherapy, 35, e102-5
  37. Abadie D, Rousseau V, Logerot S, Cottin J, Montastruc JL, Montastruc F (2015) "Serotonin Syndrome: Analysis of Cases Registered in the French Pharmacovigilance Database." J Clin Psychopharmacol
  38. Shakoor M, Ayub S, Ahad A, Ayub Z (2014) "Transient serotonin syndrome caused by concurrent use of tramadol and selective serotonin reuptake inhibitor." Am J Case Rep, 15, p. 562-4
  39. Larson KJ, Wittwer ED, Nicholson WT, Weingarten TN, Price DL, Sprung J (2015) "Myoclonus in patient on fluoxetine after receiving fentanyl and low-dose methylene blue during sentinel lymph node biopsy." J Clin Anesth, 27, p. 247-51
  40. US Food and Drug Administration (FDA) (2018) FDA Drug Safety Communication: FDA warns about several safety issues with opioid pain medicines; requires label changes. https://www.fda.gov/downloads/Drugs/DrugSafety/UCM491302.pdf
View all 40 references

Switch to consumer interaction data

Drug and food interactions

Moderate

codeine food

Applies to: Empirin with Codeine (aspirin / codeine)

GENERALLY AVOID: Ethanol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

MANAGEMENT: Concomitant use of opioid analgesics with ethanol should be avoided.

References

  1. Linnoila M, Hakkinen S (1974) "Effects of diazepam and codeine, alone and in combination with alcohol, on simulated driving." Clin Pharmacol Ther, 15, p. 368-73
  2. Sturner WQ, Garriott JC (1973) "Deaths involving propoxyphene: a study of 41 cases over a two-year period." JAMA, 223, p. 1125-30
  3. Girre C, Hirschhorn M, Bertaux L, et al. (1991) "Enhancement of propoxyphene bioavailability by ethanol: relation to psychomotor and cognitive function in healthy volunteers." Eur J Clin Pharmacol, 41, p. 147-52
  4. Levine B, Saady J, Fierro M, Valentour J (1984) "A hydromorphone and ethanol fatality." J Forensic Sci, 29, p. 655-9
  5. Sellers EM, Hamilton CA, Kaplan HL, Degani NC, Foltz RL (1985) "Pharmacokinetic interaction of propoxyphene with ethanol." Br J Clin Pharmacol, 19, p. 398-401
  6. Carson DJ (1977) "Fatal dextropropoxyphene poisoning in Northern Ireland. Review of 30 cases." Lancet, 1, p. 894-7
  7. Rosser WW (1980) "The interaction of propoxyphene with other drugs." Can Med Assoc J, 122, p. 149-50
  8. Edwards C, Gard PR, Handley SL, Hunter M, Whittington RM (1982) "Distalgesic and ethanol-impaired function." Lancet, 2, p. 384
  9. Kiplinger GF, Sokol G, Rodda BE (1974) "Effect of combined alcohol and propoxyphene on human performance." Arch Int Pharmacodyn Ther, 212, p. 175-80
View all 9 references

Switch to consumer interaction data

Moderate

naproxen food

Applies to: naproxen / sumatriptan

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn

Switch to consumer interaction data

Moderate

aspirin food

Applies to: Empirin with Codeine (aspirin / codeine)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn

Switch to consumer interaction data

Minor

aspirin food

Applies to: Empirin with Codeine (aspirin / codeine)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6

Switch to consumer interaction data

Therapeutic duplication warnings

Therapeutic duplication is the use of more than one medicine from the same drug category or therapeutic class to treat the same condition. This can be intentional in cases where drugs with similar actions are used together for demonstrated therapeutic benefit. It can also be unintentional in cases where a patient has been treated by more than one doctor, or had prescriptions filled at more than one pharmacy, and can have potentially adverse consequences.

Duplication

Nonsteroidal anti-inflammatories

Therapeutic duplication

The recommended maximum number of medicines in the 'nonsteroidal anti-inflammatories' category to be taken concurrently is usually one. Your list includes two medicines belonging to the 'nonsteroidal anti-inflammatories' category:

  • Empirin with Codeine (aspirin/codeine)
  • naproxen/sumatriptan

Note: In certain circumstances, the benefits of taking this combination of drugs may outweigh any risks. Always consult your healthcare provider before making changes to your medications or dosage.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.