Skip to main content

Drug Interactions between Elinest and troglitazone

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

ethinyl estradiol troglitazone

Applies to: Elinest (ethinyl estradiol / norgestrel) and troglitazone

ADDITIONAL CONTRACEPTION RECOMMENDED: Coadministration with troglitazone may decrease the plasma concentrations and efficacy of contraceptive hormones. The proposed mechanism is troglitazone induction of CYP450 3A4, the isoenzyme partially responsible for the metabolic clearance of sex hormones and other steroids. In 15 healthy female subjects, troglitazone (60 mg once daily for 3 weeks) decreased the mean steady-state peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of ethinyl estradiol and norethindrone (35 mcg-1 mg) by approximately 30% each compared to administration of the contraceptive alone. Four subjects experienced breakthrough bleeding during the cycle with troglitazone.

MANAGEMENT: Women using hormonal contraceptives should be advised of the risk of breakthrough bleeding and unintended pregnancy during concomitant therapy with troglitazone. Alternative or additional methods of birth control should be used during and for at least two weeks after short-term and 4 weeks after long-term (greater than 4 weeks) troglitazone therapy. If a combination oral contraceptive pill is used, a regimen containing at least 50 mcg of ethinyl estradiol per day or equivalent should be selected. Although breakthrough bleeding is not necessarily indicative of low ethinyl estradiol serum levels or increased risk of ovulation, some clinicians suggest that women who experience breakthrough bleeding during enzyme-inducing therapy may be prescribed an increased dose of ethinyl estradiol above 50 mcg daily by combining more than one formulation of contraceptive pill if necessary. For levonorgestrel emergency contraception in patients receiving enzyme-inducing therapy, a regimen consisting of a 1.5 mg dose as soon as possible (within 72 hours of unprotected intercourse) followed by a 0.75 mg or 1.5 mg dose twelve hours later has been recommended by some clinicians. An alternative is a single 2.25 mg dose as soon as possible following unprotected intercourse. However, there are no data on efficacy, compliance, or side effects with any of these regimens. No precautions or recommendations are available for women using hormone-releasing intrauterine systems, but a significant interaction with these systems is thought to be unlikely due to their local action. Injectable progestin-only contraceptives are also thought to be unaffected by enzyme-inducing drugs.

References

  1. "Product Information. Rezulin (troglitazone)." Parke-Davis PROD (2001):
  2. Loi CM, Stern R, Koup JR, Vassos AB, Knowlton P, Sedman AJ "Effect of troglitazone on the pharmacokinetics of an oral contraceptive agent." J Clin Pharmacol 39 (1999): 410-7
  3. Sahi J, Black CB, Hamilton GA, et al. "Comparative Effects of Thiazolidinediones on in Vitro P450 Enzyme Induction and Inhibition." Drug Metab Dispos 31 (2003): 439-446
  4. "FFPRHC Guidance (April 2005). Drug interactions with hormonal contraception." J Fam Plann Reprod Health Care 31 (2005): 139-51
View all 4 references

Switch to consumer interaction data

Moderate

norgestrel troglitazone

Applies to: Elinest (ethinyl estradiol / norgestrel) and troglitazone

ADDITIONAL CONTRACEPTION RECOMMENDED: Coadministration with troglitazone may decrease the plasma concentrations and efficacy of contraceptive hormones. The proposed mechanism is troglitazone induction of CYP450 3A4, the isoenzyme partially responsible for the metabolic clearance of sex hormones and other steroids. In 15 healthy female subjects, troglitazone (60 mg once daily for 3 weeks) decreased the mean steady-state peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of ethinyl estradiol and norethindrone (35 mcg-1 mg) by approximately 30% each compared to administration of the contraceptive alone. Four subjects experienced breakthrough bleeding during the cycle with troglitazone.

MANAGEMENT: Women using hormonal contraceptives should be advised of the risk of breakthrough bleeding and unintended pregnancy during concomitant therapy with troglitazone. Alternative or additional methods of birth control should be used during and for at least two weeks after short-term and 4 weeks after long-term (greater than 4 weeks) troglitazone therapy. If a combination oral contraceptive pill is used, a regimen containing at least 50 mcg of ethinyl estradiol per day or equivalent should be selected. Although breakthrough bleeding is not necessarily indicative of low ethinyl estradiol serum levels or increased risk of ovulation, some clinicians suggest that women who experience breakthrough bleeding during enzyme-inducing therapy may be prescribed an increased dose of ethinyl estradiol above 50 mcg daily by combining more than one formulation of contraceptive pill if necessary. For levonorgestrel emergency contraception in patients receiving enzyme-inducing therapy, a regimen consisting of a 1.5 mg dose as soon as possible (within 72 hours of unprotected intercourse) followed by a 0.75 mg or 1.5 mg dose twelve hours later has been recommended by some clinicians. An alternative is a single 2.25 mg dose as soon as possible following unprotected intercourse. However, there are no data on efficacy, compliance, or side effects with any of these regimens. No precautions or recommendations are available for women using hormone-releasing intrauterine systems, but a significant interaction with these systems is thought to be unlikely due to their local action. Injectable progestin-only contraceptives are also thought to be unaffected by enzyme-inducing drugs.

References

  1. "Product Information. Rezulin (troglitazone)." Parke-Davis PROD (2001):
  2. Loi CM, Stern R, Koup JR, Vassos AB, Knowlton P, Sedman AJ "Effect of troglitazone on the pharmacokinetics of an oral contraceptive agent." J Clin Pharmacol 39 (1999): 410-7
  3. Sahi J, Black CB, Hamilton GA, et al. "Comparative Effects of Thiazolidinediones on in Vitro P450 Enzyme Induction and Inhibition." Drug Metab Dispos 31 (2003): 439-446
  4. "FFPRHC Guidance (April 2005). Drug interactions with hormonal contraception." J Fam Plann Reprod Health Care 31 (2005): 139-51
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Moderate

norgestrel food

Applies to: Elinest (ethinyl estradiol / norgestrel)

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther 49 (1991): 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  4. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie 49 (1994): 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  8. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther 58 (1995): 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol 36 (1996): 469-76
  11. Majeed A, Kareem A "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol 10 (1996): 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol 42 (1996): p662
  13. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther 63 (1998): 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet 23 (1998): 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther 64 (1998): 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther 64 (1998): 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  22. Eagling VA, Profit L, Back DJ "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol 48 (1999): 543-52
  23. Damkier P, Hansen LL, Brosen K "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol 48 (1999): 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther 21 (1999): 1890-9
  25. Dresser GK, Spence JD, Bailey DG "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet 38 (2000): 41-57
  26. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol 49 (2000): 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit 23 (2001): 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol 44 (1993): 295-8
  32. Flanagan D "Understanding the grapefruit-drug interaction." Gen Dent 53 (2005): 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Moderate

troglitazone food

Applies to: troglitazone

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References

  1. Jerntorp P, Almer LO "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand 656 (1981): 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol 24 (1983): 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia 24 (1983): 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A "Interaction of ethanol and glipizide in humans." Diabetes Care 10 (1987): 683-6
  5. "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  6. "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM "The pharmacology of sulfonylureas." Am J Med 70 (1981): 361-72
  9. "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care 25(Suppl 1) (2002): S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
View all 10 references

Switch to consumer interaction data

Minor

ethinyl estradiol food

Applies to: Elinest (ethinyl estradiol / norgestrel)

Coadministration with grapefruit juice may increase the bioavailability of oral estrogens. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. In a small, randomized, crossover study, the administration of ethinyl estradiol with grapefruit juice (compared to herbal tea) increased peak plasma drug concentration (Cmax) by 37% and area under the concentration-time curve (AUC) by 28%. Based on these findings, grapefruit juice is unlikely to affect the overall safety profile of ethinyl estradiol. However, as with other drug interactions involving grapefruit juice, the pharmacokinetic alterations are subject to a high degree of interpatient variability. Also, the effect on other estrogens has not been studied.

References

  1. Weber A, Jager R, Borner A, et al. "Can grapefruit juice influence ethinyl estradiol bioavailability?" Contraception 53 (1996): 41-7
  2. Schubert W, Eriksson U, Edgar B, Cullberg G, Hedner T "Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17B-estradiol." Eur J Drug Metab Pharmacokinet 20 (1995): 219-24

Switch to consumer interaction data

Minor

ethinyl estradiol food

Applies to: Elinest (ethinyl estradiol / norgestrel)

The central nervous system effects and blood levels of ethanol may be increased in patients taking oral contraceptives, although data are lacking and reports are contradictory. The mechanism may be due to enzyme inhibition. Consider counseling women about this interaction which is unpredictable.

References

  1. Hobbes J, Boutagy J, Shenfield GM "Interactions between ethanol and oral contraceptive steroids." Clin Pharmacol Ther 38 (1985): 371-80

Switch to consumer interaction data

Minor

norgestrel food

Applies to: Elinest (ethinyl estradiol / norgestrel)

The central nervous system effects and blood levels of ethanol may be increased in patients taking oral contraceptives, although data are lacking and reports are contradictory. The mechanism may be due to enzyme inhibition. Consider counseling women about this interaction which is unpredictable.

References

  1. Hobbes J, Boutagy J, Shenfield GM "Interactions between ethanol and oral contraceptive steroids." Clin Pharmacol Ther 38 (1985): 371-80

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.