Skip to main content

Drug Interactions between Duo Fusion and siponimod

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

famotidine siponimod

Applies to: Duo Fusion (calcium carbonate / famotidine / magnesium hydroxide) and siponimod

GENERALLY AVOID: The risk of severe bradycardia and atrioventricular (AV) block may be increased during initiation of siponimod treatment in patients receiving other drugs that slow heart rate or AV conduction such as beta-blockers, certain calcium channel blockers (e.g., diltiazem, verapamil), and digitalis. Siponimod can cause a decrease in heart rate during initiation of therapy that is apparent within an hour of the first dose, and the day 1 decline is maximal at approximately 3 to 4 hours. The maximal decrease in heart rate from baseline was seen between day 5 and 6. After day 6, heart rate starts increasing and reaches placebo levels within 10 days after treatment initiation. The highest daily post-dose decrease in absolute hourly mean heart rate is observed on day 1, with a decrease of 5 to 6 bpm. Following day 1, decreases in heart rate are less pronounced. Heart rates below 40 bpm were rarely observed. In controlled clinical trials, bradycardia (including bradycardia, sinus bradycardia, and decreased heart rate) occurred in 6% of siponimod-treated patients compared to 3% of patients receiving placebo. Initiation of siponimod treatment has also resulted in transient AV conduction delays. First-degree AV block (prolonged PR interval on ECG) occurred in 5.1% of siponimod-treated patients and 1.9% of patients receiving placebo. Second-degree AV blocks, usually Mobitz type I (Wenckebach), have been observed at the time of siponimod initiation in less than 1.7% of patients. Bradycardia and conduction abnormalities were usually transient and asymptomatic, and resolved within the first 24 hours, but they occasionally required treatment with atropine. In a dedicated pharmacodynamics/safety study, the addition of propranolol to siponimod at steady-state resulted in less pronounced negative chronotropic effects than the addition of siponimod to propranolol at steady-state.

MANAGEMENT: Siponimod has not been adequately studied in patients receiving concomitant therapy with drugs that decrease heart rate. Treatment with siponimod should generally not be initiated in patients who are concurrently treated with heart rate-lowering drugs. Advice from a cardiologist should be sought if coadministration of siponimod and drugs that slow heart rate or AV conduction is considered. For patients receiving a stable dose of a beta-blocker, resting heart rate should be considered before introducing siponimod treatment. If resting heart rate is greater than 50 bpm with chronic beta-blocker treatment, siponimod can be introduced. If resting heart rate is less than or equal to 50 bpm, beta-blocker treatment should be interrupted until baseline heart rate is greater than 50 bpm. Then, siponimod can be initiated and beta-blocker treatment can be reinitiated after siponimod has been up-titrated to the target maintenance dosage.

References (2)
  1. Cerner Multum, Inc. "Australian Product Information."
  2. (2019) "Product Information. Mayzent (siponimod)." Novartis Pharmaceuticals
Moderate

magnesium hydroxide siponimod

Applies to: Duo Fusion (calcium carbonate / famotidine / magnesium hydroxide) and siponimod

MONITOR: Bowel cleansing as well as overuse of certain laxatives may cause electrolyte loss and increase the risk of torsade de pointes ventricular arrhythmia in patients treated with drugs that prolong the QT interval. Electrolyte disturbances including hypokalemia and hypomagnesemia have been reported with laxative abuse and are known risk factors for torsade de pointes associated with QT interval prolongation.

MANAGEMENT: Patients treated with drugs that prolong the QT interval should exercise caution when self-medicating with laxatives. The recommended dosage and duration of use should not be exceeded. Patients treated with lactulose for more than six months should be monitored periodically for electrolyte imbalance. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References (6)
  1. Chin RL (1998) "Laxative-induced hypokalemia." Ann Emerg Med, 32, p. 517-8
  2. Muller-Lissner SA (1993) "Adverse effects of laxatives: fact and fiction." Pharmacology, 47, p. 138-45
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  5. Cerner Multum, Inc. "Australian Product Information."
  6. Schaefer DC, Cheskin LJ (1998) "Constipation in the elderly." Am Fam Physician, 58, p. 907-14
Minor

famotidine calcium carbonate

Applies to: Duo Fusion (calcium carbonate / famotidine / magnesium hydroxide) and Duo Fusion (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References (12)
  1. Donn KH, Eshelman FN, Plachetka JR, et al. (1984) "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy, 4, p. 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. (1984) "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol, 26, p. 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J (1987) "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol, 24, p. 551-3
  4. Bodemar G, Norlander B, Walan A (1979) "Diminished absorption of cimetidine caused by antacids." Lancet, 02/24/79, p. 444-5
  5. Steinberg WM, Lewis JH, Katz DM (1982) "Antacids inhibit absorption of cimetidine." N Engl J Med, 307, p. 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E (1989) "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol, 29, p. 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. (1984) "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci, 29, p. 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J (1986) "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm, 20, p. 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P (1987) "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol, 32, p. 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA (1982) "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J, 285, p. 998-9
  11. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L (1994) "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol, 29, p. 14-9
Minor

famotidine magnesium hydroxide

Applies to: Duo Fusion (calcium carbonate / famotidine / magnesium hydroxide) and Duo Fusion (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References (12)
  1. Donn KH, Eshelman FN, Plachetka JR, et al. (1984) "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy, 4, p. 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. (1984) "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol, 26, p. 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J (1987) "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol, 24, p. 551-3
  4. Bodemar G, Norlander B, Walan A (1979) "Diminished absorption of cimetidine caused by antacids." Lancet, 02/24/79, p. 444-5
  5. Steinberg WM, Lewis JH, Katz DM (1982) "Antacids inhibit absorption of cimetidine." N Engl J Med, 307, p. 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E (1989) "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol, 29, p. 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. (1984) "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci, 29, p. 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J (1986) "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm, 20, p. 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P (1987) "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol, 32, p. 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA (1982) "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J, 285, p. 998-9
  11. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L (1994) "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol, 29, p. 14-9

Drug and food interactions

Moderate

calcium carbonate food

Applies to: Duo Fusion (calcium carbonate / famotidine / magnesium hydroxide)

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References (6)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia Española de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de información online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  5. Mangels AR (2014) "Bone nutrients for vegetarians." Am J Clin Nutr, 100, epub
  6. Davies NT (1979) "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc, 38, p. 121-8
Minor

famotidine food

Applies to: Duo Fusion (calcium carbonate / famotidine / magnesium hydroxide)

H2 antagonists may reduce the clearance of nicotine. Cimetidine, 600 mg given twice a day for two days, reduced clearance of an intravenous nicotine dose by 30%. Ranitidine, 300 mg given twice a day for two days, reduced clearance by 10%. The clinical significance of this interaction is not known. Patients should be monitored for increased nicotine effects when using the patches or gum for smoking cessation and dosage adjustments should be made as appropriate.

References (1)
  1. Bendayan R, Sullivan JT, Shaw C, Frecker RC, Sellers EM (1990) "Effect of cimetidine and ranitidine on the hepatic and renal elimination of nicotine in humans." Eur J Clin Pharmacol, 38, p. 165-9

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.