Skip to main content

Drug Interactions between Dual-Action Acid Controller Complete and NegGram

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

nalidixic acid calcium carbonate

Applies to: NegGram (nalidixic acid) and Dual-Action Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide)

ADJUST DOSING INTERVAL: Oral preparations that contain magnesium, aluminum, or calcium may significantly decrease the gastrointestinal absorption of nalidixic acid. Absorption may also be reduced by sucralfate, which contains aluminum, as well as other polyvalent cations such as iron and zinc. The mechanism is chelation of nalidixic acid by polyvalent cations, forming a complex that is poorly absorbed from the gastrointestinal tract.

MANAGEMENT: When coadministration cannot be avoided, nalidixic acid should be dosed at least 2 hours before or 2 hours after polyvalent cation-containing products to minimize the potential for interaction.

References

  1. "Product Information. Neggram (nalidixic acid)." Sanofi Winthrop Pharmaceuticals

Switch to consumer interaction data

Moderate

nalidixic acid magnesium hydroxide

Applies to: NegGram (nalidixic acid) and Dual-Action Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide)

ADJUST DOSING INTERVAL: Oral preparations that contain magnesium, aluminum, or calcium may significantly decrease the gastrointestinal absorption of nalidixic acid. Absorption may also be reduced by sucralfate, which contains aluminum, as well as other polyvalent cations such as iron and zinc. The mechanism is chelation of nalidixic acid by polyvalent cations, forming a complex that is poorly absorbed from the gastrointestinal tract.

MANAGEMENT: When coadministration cannot be avoided, nalidixic acid should be dosed at least 2 hours before or 2 hours after polyvalent cation-containing products to minimize the potential for interaction.

References

  1. "Product Information. Neggram (nalidixic acid)." Sanofi Winthrop Pharmaceuticals

Switch to consumer interaction data

Minor

famotidine calcium carbonate

Applies to: Dual-Action Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide) and Dual-Action Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References

  1. Donn KH, Eshelman FN, Plachetka JR, et al. (1984) "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy, 4, p. 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. (1984) "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol, 26, p. 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J (1987) "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol, 24, p. 551-3
  4. Bodemar G, Norlander B, Walan A (1979) "Diminished absorption of cimetidine caused by antacids." Lancet, 02/24/79, p. 444-5
  5. Steinberg WM, Lewis JH, Katz DM (1982) "Antacids inhibit absorption of cimetidine." N Engl J Med, 307, p. 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E (1989) "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol, 29, p. 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. (1984) "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci, 29, p. 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J (1986) "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm, 20, p. 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P (1987) "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol, 32, p. 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA (1982) "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J, 285, p. 998-9
  11. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L (1994) "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol, 29, p. 14-9
View all 12 references

Switch to consumer interaction data

Minor

famotidine magnesium hydroxide

Applies to: Dual-Action Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide) and Dual-Action Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References

  1. Donn KH, Eshelman FN, Plachetka JR, et al. (1984) "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy, 4, p. 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. (1984) "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol, 26, p. 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J (1987) "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol, 24, p. 551-3
  4. Bodemar G, Norlander B, Walan A (1979) "Diminished absorption of cimetidine caused by antacids." Lancet, 02/24/79, p. 444-5
  5. Steinberg WM, Lewis JH, Katz DM (1982) "Antacids inhibit absorption of cimetidine." N Engl J Med, 307, p. 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E (1989) "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol, 29, p. 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. (1984) "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci, 29, p. 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J (1986) "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm, 20, p. 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P (1987) "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol, 32, p. 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA (1982) "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J, 285, p. 998-9
  11. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L (1994) "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol, 29, p. 14-9
View all 12 references

Switch to consumer interaction data

Drug and food interactions

Moderate

calcium carbonate food

Applies to: Dual-Action Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide)

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  5. Mangels AR (2014) "Bone nutrients for vegetarians." Am J Clin Nutr, 100, epub
  6. Davies NT (1979) "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc, 38, p. 121-8
View all 6 references

Switch to consumer interaction data

Moderate

nalidixic acid food

Applies to: NegGram (nalidixic acid)

ADJUST DOSING INTERVAL: Oral preparations that contain magnesium, aluminum, or calcium may significantly decrease the gastrointestinal absorption of nalidixic acid. Absorption may also be reduced by sucralfate, which contains aluminum, as well as other polyvalent cations such as iron and zinc. The mechanism is chelation of nalidixic acid by polyvalent cations, forming a complex that is poorly absorbed from the gastrointestinal tract.

MANAGEMENT: When coadministration cannot be avoided, nalidixic acid should be dosed at least 2 hours before or 2 hours after polyvalent cation-containing products to minimize the potential for interaction.

References

  1. "Product Information. Neggram (nalidixic acid)." Sanofi Winthrop Pharmaceuticals

Switch to consumer interaction data

Moderate

nalidixic acid food

Applies to: NegGram (nalidixic acid)

MONITOR: Coadministration with certain quinolones may increase the plasma concentrations and pharmacologic effects of caffeine due to inhibition of the CYP450 1A2 metabolism of caffeine. Quinolones that may inhibit CYP450 1A2 include ciprofloxacin, enoxacin, grepafloxacin, nalidixic acid, norfloxacin, pipemidic acid, and pefloxacin (not all commercially available). In healthy volunteers, enoxacin (100 to 400 mg twice daily) increased systemic exposure (AUC) of caffeine by 2- to 5-fold and reduced its clearance by approximately 80%. Pipemidic acid (400 to 800 mg twice daily) increased AUC of caffeine by 2- to 3-fold and reduced its clearance by approximately 60%. Ciprofloxacin (250 to 750 mg twice daily) increased AUC and elimination half-life of caffeine by 50% to over 100%, and reduced its clearance by 30% to 50%. Norfloxacin 400 mg twice daily increased caffeine AUC by 16%, while 800 mg twice daily increased caffeine AUC by 52% and reduced its clearance by 35%. Pefloxacin (400 mg twice daily) has been shown to reduce caffeine clearance by 47%.

MANAGEMENT: Patients using caffeine-containing products should be advised that increased adverse effects such as headache, tremor, restlessness, nervousness, insomnia, tachycardia, and blood pressure increases may occur during coadministration with quinolones that inhibit CYP450 1A2. Caffeine intake should be limited when taking high dosages of these quinolones. If an interaction is suspected, other quinolones such as gatifloxacin, gemifloxacin, levofloxacin, lomefloxacin, moxifloxacin, and ofloxacin may be considered, since they are generally believed to have little or no effect on CYP450 1A2 or have been shown not to interact with caffeine.

References

  1. Polk RE (1989) "Drug-drug interactions with ciprofloxacin and other fluoroquinolones." Am J Med, 87, s76-81
  2. Healy DP, Polk RE, Kanawati L, Rock DT, Mooney ML (1989) "Interaction between oral ciprofloxacin and caffeine in normal volunteers." Antimicrob Agents Chemother, 33, p. 474-8
  3. Harder S, Fuhr U, Staib AH, Wolf T (1989) "Ciprofloxacin-caffeine: a drug interaction established using in vivo and in vitro investigations." Am J Med, 87, p. 89-91
  4. Carbo ML, Segura J, De la Torre R, et al. (1989) "Effect of quinolones on caffeine disposition." Clin Pharmacol Ther, 45, p. 234-40
  5. (1993) "Product Information. Penetrax (enoxacin)." Rhone-Poulenc Rorer, Collegeville, PA.
  6. Mahr G, Sorgel F, Granneman GR, et al. (1992) "Effects of temafloxacin and ciprofloxacin on the pharmacokinetics of caffeine." Clin Pharmacokinet, 22, p. 90-7
  7. (2002) "Product Information. Cipro (ciprofloxacin)." Bayer
  8. (2001) "Product Information. Noroxin (norfloxacin)." Merck & Co., Inc
  9. Staib AH, Stille W, Dietlein G, et al. (1987) "Interaction between quinolones and caffeine." Drugs, 34 Suppl 1, p. 170-4
  10. Stille W, Harder S, Micke S, et al. (1987) "Decrease of caffeine elimination in man during co-administration of 4-quinolones." J Antimicrob Chemother, 20, p. 729-34
  11. Harder S, Staib AH, Beer C, Papenburg A, Stille W, Shah PM (1988) "4-Quinolones inhibit biotransformation of caffeine." Eur J Clin Pharmacol, 35, p. 651-6
  12. Nicolau DP, Nightingale CH, Tessier PR, et al. (1995) "The effect of fleroxacin and ciprofloxacin on the pharmacokinetics of multiple dose caffeine." Drugs, 49 Suppl 2, p. 357-9
  13. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  14. Carrillo JA, Benitez J (2000) "Clinically significant pharmacokinetic interactions between dietary caffeine and medications." Clin Pharmacokinet, 39, p. 127-53
  15. Fuhr U, Wolff T, Harder S, Schymanski P, Staib AH (1990) "Quinolone inhibition of cytochrome P-450 dependent caffeine metabolism in human liver microsomes." Drug Metab Dispos, 18, p. 1005-10
  16. Kinzig-Schippers M, Fuhr U, Zaigler M, et al. (1999) "Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2." Clin Pharmacol Ther, 65, p. 262-74
  17. Healy DP, Schoenle JR, Stotka J, Polk RE (1991) "Lack of interaction between lomefloxacin and caffeine in normal volunteers." Antimicrob Agents Chemother, 35, p. 660-4
View all 17 references

Switch to consumer interaction data

Minor

famotidine food

Applies to: Dual-Action Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide)

H2 antagonists may reduce the clearance of nicotine. Cimetidine, 600 mg given twice a day for two days, reduced clearance of an intravenous nicotine dose by 30%. Ranitidine, 300 mg given twice a day for two days, reduced clearance by 10%. The clinical significance of this interaction is not known. Patients should be monitored for increased nicotine effects when using the patches or gum for smoking cessation and dosage adjustments should be made as appropriate.

References

  1. Bendayan R, Sullivan JT, Shaw C, Frecker RC, Sellers EM (1990) "Effect of cimetidine and ranitidine on the hepatic and renal elimination of nicotine in humans." Eur J Clin Pharmacol, 38, p. 165-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.