Drug Interactions between dostarlimab and mercaptopurine
This report displays the potential drug interactions for the following 2 drugs:
- dostarlimab
- mercaptopurine
Interactions between your drugs
mercaptopurine dostarlimab
Applies to: mercaptopurine and dostarlimab
MONITOR: Although immune checkpoint inhibitors (ICI) such as programmed cell death-1 (PD-1), programmed death ligand-1 inhibitors (PD-L1), and anti-CTLA-4 monoclonal antibodies may be indicated for use in combination in with other immunosuppressive agents, their pharmacodynamic effects and efficacy may be affected by corticosteroids and immunosuppressants. The mechanism of this interaction is related to the immunosuppressive effects of corticosteroids and other immunosuppressants, particularly their inhibition of T-cell activation, which may reduce the efficacy of immune checkpoint inhibitors that rely on a strong immune response to target tumor cells. Additionally, immune-related adverse events (irAEs) from ICIs may indicate a stronger immune response and improved tumor outcomes and treating them with immunosuppressive agents could therefore reduce immune activity and the efficacy of ICIs. For instance, data from the Dutch Melanoma Treatment Registry (DTMR) showed that patients with advanced melanoma who experienced severe ICI toxicity had a longer median overall survival (OS) (23 months vs. 15 months), but those needing anti-TNF therapy for steroid-refractory toxicity had worse outcomes (17 months vs. 27 months with steroids alone). In a study of patients with advanced NSCLC (n=640), oral or intravenous corticosteroid use (>/= 10 mg prednisone equivalent per day) at the time of or within 30 days of starting PD-1/PD-L1 blockade with either pembrolizumab, nivolumab, atezolizumab, or durvalumab (n=90) was associated with decreased response and overall poorer outcomes, compared to those who received and discontinued corticosteroid treatment prior to commencing PD-1/PD-L1 therapy. Further, an international multicenter cohort study in melanoma patients who developed irAEs with ICI therapy found that higher peak doses of corticosteroids, but not cumulative doses, were associated with worse survival, though the impact of second-line immunosuppressants remains unclear. A prospective observational study using data from a German multicenter skin cancer registry (ADOREG) evaluated patients with unresectable advanced melanoma who received immunosuppressive therapy (IST) (e.g., methylprednisolone, prednisolone, dexamethasone, infliximab, interferon, methotrexate) within 60 days before or within 30 days after the start of an ICI. The initiation of IST before, but not after the start of ICI, was associated with worse progression free survival in patients without brain metastasis, and worse OS in patients with brain metastasis. However, based on available literature, it is difficult to determine whether these effects are due to corticosteroid and/or immunosuppressant use or if they reflect subgroups of patients in studies with poorer prognoses.
MANAGEMENT: Caution and closer monitoring for reduced efficacy of immune checkpoint inhibitors (ICI) is advised if corticosteroids and/or other immunosuppressants are used concurrently. Based on available literature, the use of immunosuppressants and/or systemic corticosteroids (>=10 mg prednisone equivalent/day) should be avoided at the time of, or within 30 to 60 days of starting therapy with an ICI if clinically possible. Corticosteroids and/or immunosuppressants can generally be safely used for the treatment of immune-mediated reactions after starting an ICI. Some manufacturers advise that corticosteroids may be used as premedication when the ICI is used in combination with chemotherapy, as antiemetic prophylaxis, and/or to alleviate chemotherapy-related adverse effects. Individual product labeling for the ICI in question should be consulted for specific recommendations.
References (29)
- Arbour KC, Mezquita L, Long N, et al. (2018) "Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer." J Clin Oncol, 36, p. 2872-2878
- (2020) "Product Information. Novoeight (antihemophilic factor)." Novo Nordisk Pharmaceuticals Inc
- Horvat TZ, Adel NG, Dand TO, et al. (2015) "Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center." J Clin Oncol, 33, p. 3193-8
- Jove M, Vilarino N, Nadal E (2019) "Impact of baseline steroids on efficacy of programmed cell death-1 (PD-1) and programmed death-ligand 1 (PD-L1) blockade in patients with advanced non-small cell lung cancer." Transl Lung Cancer Res, 8, S364-8
- Scott SC, Pennell NA (2018) "Early use of systemic corticosteroids in patients with advanced NSCLC treated with nivolumab." J Thorac Oncol, 13, p. 1771-5
- Fuca G, Galli G, Poggi M, et al. (2019) "Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors." ESMO Open, 4, e000457
- (2022) "Product Information. Imfinzi (durvalumab)." AstraZeneca Pty Ltd
- (2023) "Product Information. Yervoy (ipilimumab)." Bristol-Myers Squibb, SUPPL-129
- (2021) "Product Information. Yervoy (ipilimumab)." Bristol-Myers Squibb Australia Pty Ltd, V15.0
- (2022) "Product Information. Yervoy (ipilimumab)." Bristol-Myers Squibb Pharmaceuticals Ltd
- (2023) "Product Information. Libtayo (cemiplimab)." Regeneron Pharmaceuticals Inc, SUPPL-16
- (2023) "Product Information. Libtayo (cemiplimab)." Sanofi-Aventis Australia Pty Ltd, lib-ccdsv7-piv4-05ju
- (2023) "Product Information. Libtayo (cemiplimab)." Sanofi
- (2023) "Product Information. Tecentriq (atezolizumab)." Genentech, SUPPL-51
- (2023) "Product Information. Imfinzi (durvalumab)." Astra-Zeneca Pharmaceuticals, SUPPL-42
- (2023) "Product Information. Opdualag (nivolumab-relatlimab)." (Obsolete) Bristol-Myers Squibb Australia Pty Ltd, 2
- (2022) "Product Information. Opdualag (nivolumab-relatlimab)." Bristol-Myers Squibb
- (2024) "Product Information. Keytruda (pembrolizumab)." Merck Sharp & Dohme LLC, SUPPL-160
- (2024) "Product Information. Keytruda (pembrolizumab)." Merck Sharp & Dohme (Australia) Pty Ltd
- (2024) "Product Information. Keytruda (pembrolizumab)." Merck Sharp & Dohme (UK) Ltd
- (2024) "Product Information. Tecentriq (atezolizumab)." Roche Products Pty Ltd
- (2024) "Product Information. Tecentriq Hybreza (atezolizumab-hyaluronidase)." Genentech
- Kochanek C, Gilde C, Zimmer L, et al (2024) Effects of an immunosuppressive therapy on the efficacy of immune checkpoint inhibition in metastatic melanoma - An analysis of the prospective skin cancer registry ADOREG https://www.sciencedirect.com/science/article/pii/S0959804923008109#:~:text=Immuno
- Verheijden RJ, Burgers FH, Janssen J, et al (2024) Corticosteroids and other immunosuppressants for immune-related adverse events and checkpoint inhibitor effectiveness in melanoma https://www.ejcancer.com/article/S0959-8049(24)00828-1/fulltext#:~:text=Recent%20studies%20indicate%20an%20association,secon
- Verheijden RJ, May AM, Black CU, et al. (2024) Association of anti-TNF with decreased survival in steroid refractory ipilimumab and anti-PD1-treated patients in the dutch melanoma treatment registry https://pubmed.ncbi.nlm.nih.gov/31988197/
- (2024) "Product Information. Tecentriq (atezolizumab)." Roche Products Ltd
- (2024) "Product Information. Imfinzi (durvalumab)." AstraZeneca UK Ltd
- Kostine M, Mauric E, Tison A, et al. (2021) "Baseline co-medications may alter the anti-tumoural effect of checkpoint inhibitors as well as the risk of immune-related adverse events." Eur J Cancer, 157, p. 474-84
- BeiGene AUS (2025) Australian product information Tevimbra (tislelizumab (rch)) https://www.ebs.tga.gov.au/ebs/picmi/picmirepository.nsf/pdf?OpenAgent=&id=CP-2024-PI-02006-1&d=20250108172310101&d=20250108172310101.&d=20250130172310101
Drug and food interactions
mercaptopurine food
Applies to: mercaptopurine
ADJUST DOSING INTERVAL: The oral bioavailability of mercaptopurine (6-MP) is highly variable and may be affected by administration with food or dairy products. The mechanism by which food may impact the absorption of 6-MP has not been fully established, but cow's milk specifically has been found to contain a high concentration of xanthine oxidase, the enzyme responsible for first-pass metabolism of 6-MP to the inactive metabolite 6-thiouric acid. Incubation with cow's milk at 37 C induced a 30% catabolism of 6-MP within 30 minutes in one investigation. However, food or dairy intake with 6-MP in study patients has yielded variable results. In a study conducted in 17 children with acute lymphoblastic leukemia (ALL), oral 6-MP 75 mg/m2 administered 15 minutes after a standardized breakfast including 250 mL of milk resulted in a prolonged Tmax and a lower Cmax and AUC compared with 6-MP administration in the fasting state (mean Tmax: 2.3 hours vs. 1.2 hours; mean Cmax: 0.63 uM vs. 0.98 uM; mean AUC: 105 uM vs. 143 uM, respectively). In a different study, oral 6-MP 31.2 to 81.1 mg/m2 administered to 7 subjects with ALL 15 minutes after a standard breakfast consisting of orange juice, cereal, and toast also trended towards longer Tmax and lower Cmax values compared to 6-MP administration after an overnight fast, although the differences were not statistically significant. Two subjects had blood samples that were all below the limit of detection (20 ng/mL) following administration in the fed state. Likewise, a study of 15 pediatric patients reported non-significant 20% to 22% decreases in the Cmax and AUC of 6-MP when administered after a standardized breakfast containing both milk and cheese compared to administration after fasting, but in contrast to the two earlier studies, Tmax was decreased from 1.8 to 1.1 hours. Another study of 10 children with ALL or non-Hodgkin's lymphoma given an average oral 6-MP dose of 63 mg/m2 revealed substantial interpatient variations in the effect of food intake on 6-MP plasma levels, with Cmax changes ranging from 67% decrease to 81% increase and AUC changes ranging from 53% decrease to 86% increase relative to administration following fasting. Collectively for the group, however, there was no statistically significant difference in mean Tmax, Cmax, or AUC between the fed and fasting states. In this study, patients were fed what they normally ate at home rather than a standardized breakfast, which may have contributed to the inconsistent results. The clinical significance of the data and observations from these studies has not been determined. An interaction with milk was suspected in a four-year-old male with ALL who experienced persistent elevations of peripheral blood counts during maintenance with 6-MP and methotrexate despite increasing doses of 6-MP up to 160% of the calculated dosage for his body surface area (75 mg/m2). Cessation of concomitant milk ingestion allowed for the 6-MP dosage to return to 75 mg/m2 and resulted in control of peripheral blood counts within a week. Other data do not support a clinically relevant interaction with food or dairy products. In a prospective study of 441 patients aged 2 to 20 years receiving 6-MP for ALL maintenance, investigators found no significant association between relapse risk and 6-MP ingestion habits including administration with food versus never with food and administration with milk/dairy versus never with milk/dairy. Among the 56.2% of patients who were considered adherent by the study, there was also no significant association between red cell thioguanine nucleotide (active metabolite) levels and taking 6-MP with food versus without or taking with milk/dairy versus without. However, taking 6-MP with milk/dairy was associated with a 1.9-fold increased risk for nonadherence. These results suggest that taking 6-MP with food or milk/dairy products may not influence clinical outcome but may hinder patient adherence. Poor 6-MP adherence has been associated with an increased risk of childhood ALL relapse.
MANAGEMENT: To minimize variability in absorption and systemic exposure, the timing of mercaptopurine administration should be standardized in relation to food intake (i.e., always with food or always on an empty stomach). Some authorities suggest avoiding concomitant administration with milk or dairy products, although the clinical relevance of their effects on mercaptopurine bioavailability has not been established. As a precaution, patients may consider taking mercaptopurine at least 1 hour before or 2 hours after milk or dairy ingestion if they are able to do so without compromising treatment adherence.
References (11)
- lafolie p, bjork o, hayder s, ahstrom l, Peterson C (1989) "Variability of 6-mercaptopurine pharmacokinetics during oral maintenance therapy of children with acute leukemia." Med Oncol Tumor Pharmacother, 6, p. 259-65
- (2024) "Product Information. Mercaptopurine (mercaptopurine)." Quinn Pharmaceutical. LLC
- (2024) "Product Information. Allmercap (mercaptOPURine)." Link Medical Products Pty Ltd T/A Link Pharmaceuticals
- (2024) "Product Information. Xaluprine (mercaptopurine)." Nova Laboratories Ltd
- (2023) "Product Information. Mercaptopurine (mercaptopurine)." Sterimax Inc
- Landier W, Hageman L, Chen Y, et al. (2017) "Mercaptopurine ingestion habits, red cell thioguanine nucleotide levels, and relapse risk in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group Study AALL03N1." J Clin Oncol, 35, p. 1730-6
- rivard ge, Lin KT, Leclerc JM, David M (1989) "Milk could decrease the bioavailability of 6-mercaptopurine." Am J Pediatr Hematol Oncol, 11, p. 402-6
- Burton NK, barnett mj, Aherne GW, et al. (1986) "The effect of food on the oral administration of 6-mercaptopurine." Cancer Chemother Pharmacol, 18, p. 90-1
- Riccardi R, Balis FM, ferrara p, et al. (1986) "Influence of food intake on bioavailability of oral 6-mercaptopurine in children with acute lymphoblastic leukemia." Pediatr Hematol Oncol, 3, p. 319-24
- Lonnerholm G, Kreuger A, Lindstrom B, et al. (1989) "Oral mercaptopurine in childhood leukemia: influence of food intake on bioavailability." Pediatr Hematol Oncol, 6, p. 105-12
- Sofianou-Katsoulis A, Khakoo G, Kaczmarski R, et al. (2006) "Reduction in bioavailability of 6-mercaptopurine on simultaneous administration with cow's milk." Pediatr Hematol Oncol, 23, p. 485-7
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.