Skip to main content

Drug Interactions between dolutegravir / rilpivirine and metformin / saxagliptin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

metFORMIN dolutegravir

Applies to: metformin / saxagliptin and dolutegravir / rilpivirine

MONITOR CLOSELY: Coadministration with dolutegravir may decrease the renal elimination of metformin resulting in increased metformin plasma concentrations and an increased risk of lactic acidosis. The proposed mechanism is dolutegravir-mediated inhibition of the renal organic cation transporter 2 (OCT2) of which metformin is a substrate. In a pharmacokinetic study in 30 healthy subjects receiving metformin 500 mg every 12 hours, half the subjects were coadministered dolutegravir 50 mg once a day while half were coadministered dolutegravir 50 mg every 12 hours. Coadministration of dolutegravir 50 mg once a day increased AUC and Cmax by 79% and 66%, respectively; coadministration of dolutegravir 50 mg every 12 hours increased AUC and Cmax by 145% and 111%, respectively. While metformin has a wide therapeutic index and is not associated with hypoglycemia at recommended doses, elevated levels of metformin are associated with lactic acidosis. Lactic acidosis tends to occur in patients with risk factors that also result in increased metformin levels such as renal insufficiency and hepatic impairment.

MANAGEMENT: Caution is advised if dolutegravir must be used concurrently with metformin. The dose of metformin may require adjustment whenever dolutegravir is added to or withdrawn from therapy, especially in patients with risk factors for increased metformin levels. One manufacturer recommends the total daily dose of metformin be limited to 1000 mg if these drugs must be used together. Clinical and laboratory monitoring, including renal function and blood glucose monitoring should be performed when these drugs are used concomitantly.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  2. Cerner Multum, Inc. "Australian Product Information." O 0
  3. "Product Information. Tivicay (dolutegravir)." ViiV Healthcare (2013):
  4. "Product Information. Triumeq (abacavir/dolutegravir/lamivudine)." ViiV Healthcare (2014):
  5. "Product Information. Juluca (dolutegravir-rilpivirine)." ViiV Healthcare (2017):
  6. Soong IH, Zong J, Borland J, et al. "The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects." J Acquir Immune Defic Syndr 72 (2016): 400-7
  7. Masich A, Badowski ME, Liedtke MD, Fulco PP "Evaluation of the concurrent use of dolutegravir and metformin in human immunodeficiency virus-infected patients." Int J STD AIDS 28 (2017): 1229-33
View all 7 references

Switch to consumer interaction data

Drug and food interactions

Major

metFORMIN food

Applies to: metformin / saxagliptin

GENERALLY AVOID: Alcohol can potentiate the effect of metformin on lactate metabolism and increase the risk of lactic acidosis. In addition, alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Although hypoglycemia rarely occurs during treatment with metformin alone, the risk may increase with acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes.

Food may have varying effects on the absorption of metformin from immediate-release versus extended-release formulations. When a single 850 mg dose of immediate-release metformin was administered with food, mean peak plasma concentration (Cmax) and systemic exposure (AUC) decreased by 40% and 25%, respectively, and time to peak plasma concentration (Tmax) increased by 35 minutes compared to administration under fasting conditions. By contrast, administration of extended-release metformin with food increased AUC by 50% without affecting Cmax or Tmax, and both high- and low-fat meals had the same effect. These data may not be applicable to formulations that contain metformin with other oral antidiabetic agents.

MANAGEMENT: Metformin should be taken with meals, and excessive alcohol intake should be avoided during treatment. Diabetes patients in general should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Alcohol should not be consumed on an empty stomach or following exercise, as it may increase the risk of hypoglycemia. Patients should contact their physician immediately if they experience potential signs and symptoms of lactic acidosis such as malaise, myalgia, respiratory distress, increasing somnolence, and nonspecific abdominal distress (especially after stabilization of metformin therapy, when gastrointestinal symptoms are uncommon). With more marked acidosis, there may also be associated hypothermia, hypotension, and resistant bradyarrhythmias. Metformin should be withdrawn promptly if lactic acidosis is suspected. Serum electrolytes, ketones, blood glucose, blood pH, lactate levels, and blood metformin levels may be useful in establishing a diagnosis. Lactic acidosis should be suspected in any diabetic patient with metabolic acidosis lacking evidence of ketoacidosis (ketonuria and ketonemia).

References

  1. "Product Information. Glucophage (metformin)." Bristol-Myers Squibb PROD (2001):
  2. "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care 25(Suppl 1) (2002): S50-S60

Switch to consumer interaction data

Moderate

sAXagliptin food

Applies to: metformin / saxagliptin

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References

  1. Jerntorp P, Almer LO "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand 656 (1981): 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol 24 (1983): 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia 24 (1983): 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A "Interaction of ethanol and glipizide in humans." Diabetes Care 10 (1987): 683-6
  5. "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  6. "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM "The pharmacology of sulfonylureas." Am J Med 70 (1981): 361-72
  9. "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care 25(Suppl 1) (2002): S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
View all 10 references

Switch to consumer interaction data

Moderate

rilpivirine food

Applies to: dolutegravir / rilpivirine

GENERALLY AVOID: Coadministration with grapefruit or grapefruit juice may increase the plasma concentrations of rilpivirine. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruit. In 15 study subjects given rilpivirine (150 mg once daily) with the potent CYP450 3A4 inhibitor ketoconazole (400 mg once daily), mean rilpivirine peak plasma concentration (Cmax), systemic exposure (AUC) and trough plasma concentration (Cmin) were increased by 30%, 49% and 76%, respectively. In 16 study subjects given a single 500 mg dose of a less potent CYP450 3A4 inhibitor chlorzoxazone two hours after rilpivirine (150 mg once daily), mean rilpivirine Cmax, AUC, and Cmin were increased by 17%, 25%, and 18%, respectively. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

ADJUST DOSING INTERVAL: The administration of rilpivirine in a fasting state may decrease its oral absorption. Under fasted conditions, the systemic exposure to rilpivirine was 40% lower compared to normal or high-fat caloric meals (533 to 928 Kcal). The systemic exposure was 50% lower when rilpivirine was taken with a protein-rich nutritional beverage.

MANAGEMENT: Coadministration of grapefruit or grapefruit juice with rilpivirine should preferably be avoided. For optimal absorption, it is recommended to take rilpivirine on a regular schedule with a meal.

References

  1. "Product Information. Edurant (rilpivirine)." Tibotec Pharmaceuticals (2011):
  2. Cerner Multum, Inc. "Canadian Product Information." O 0 (2015):

Switch to consumer interaction data

Minor

dolutegravir food

Applies to: dolutegravir / rilpivirine

Food increases the extent of absorption and slows the rate of absorption of dolutegravir. When administered with a low-, moderate- or high-fat meal, dolutegravir peak plasma concentration (Cmax) increased by 46%, 52% and 67%, systemic exposure (AUC) increased by 33%, 41% and 66%, and time to reach Cmax (Tmax) increased from 2 hours to 3, 4 and 5 hours, respectively, compared to administration under fasted conditions. Dolutegravir may be taken with or without food.

References

  1. "Product Information. Tivicay (dolutegravir)." ViiV Healthcare (2013):

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.