Skip to main content

Drug Interactions between Docefrez and Nuedexta

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

quiNIDine dextromethorphan

Applies to: Nuedexta (dextromethorphan / quinidine) and Nuedexta (dextromethorphan / quinidine)

GENERALLY AVOID: Coadministration with potent CYP450 2D6 inhibitors (e.g., quinidine, terbinafine) may significantly increase the plasma concentrations of dextromethorphan in patients who are extensive metabolizers of this isoenzyme (approximately 93% of Caucasians and more than 98% of Asians and individuals of African descent). The proposed mechanism is inhibition of the CYP450 2D6-mediated O-demethylation of dextromethorphan. Studies in humans have shown an increase in systemic exposure of dextromethorphan of up to 43-fold when given concurrently with quinidine. Increased plasma concentrations increase the risk of dextromethorphan-related adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome. However, this interaction has also been used clinically, with dextromethorphan in combination with quinidine indicated by some authorities for the treatment of pseudobulbar affect. Data evaluating the impact of this interaction in patients who are poor metabolizers of CYP450 2D6 are limited; most studies include extensive metabolizers of this isoenzyme. It is expected that poor metabolizers would have elevated dextromethorphan levels without concurrent quinidine

MANAGEMENT: The combination of dextromethorphan with potent CYP450 2D6 inhibitors should be generally avoided. Some manufacturers consider the concomitant use of dextromethorphan and selective serotonin reuptake inhibitors contraindicated. If use is considered necessary, the patient should be monitored for signs of dextromethorphan adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome, and advised to notify their health care professional if these adverse effects develop or worsen. Dose reduction of dextromethorphan may also be required.

References

  1. Zhang Y, Britto MR, Valderhaug KL, Wedlund PJ, Smith RA (1992) "Dextromethorphan: enhancing its systemic availability by way of low-dose quinidine-mediated inhibition of cytochrome P4502D6." Clin Pharmacol Ther, 51, p. 647-55
  2. Schadel M, Wu DA, Otton SV, Kalow W, Sellers EM (1995) "Pharmacokinetics of dextromethorphan and metabolites in humans: influence of the CYP2d6 phenotype and quinidine inhibition." J Clin Psychopharmacol, 15, p. 263-9
  3. Capon DA, Bochner F, Kerry N, Mikus G, Danz C, Somogyi AA (1996) "The influence of CYP2d6 polymorphism and quinidine on the disposition and antitussive effect of dextromethorphan in humans." Clin Pharmacol Ther, 60, p. 295-307
  4. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  5. Cerner Multum, Inc. "Australian Product Information."
  6. (2010) "Product Information. Nuedexta (dextromethorphan-quinidine)." Avanir Pharmaceuticals, Inc
View all 6 references

Switch to consumer interaction data

Moderate

quiNIDine DOCEtaxel

Applies to: Nuedexta (dextromethorphan / quinidine) and Docefrez (docetaxel)

MONITOR: Coadministration with inhibitors of P-glycoprotein (P-gp) may increase the blood concentrations of the taxanes, docetaxel and paclitaxel, which have been shown to be substrates of the efflux transporter. The clinical significance has not been fully elucidated. However, use of dual CYP450 3A4 and P-gp inhibitors such as ketoconazole, amiodarone, and dronedarone have been shown to increase the systemic exposure of docetaxel and paclitaxel. In a case report involving a 77-year-old woman with HER2-positive invasive ductal breast cancer on long-term amiodarone therapy, 4 cycles of paclitaxel (80 mg/m2 weekly) and trastuzumab led to development of increasing abdominal discomfort and skin lesions. However, switching to reduced dose docetaxel (100 mg or 75 mg/m2 weekly) led to the development of severe skin and mucosal toxicity, requiring hospitalization 8 days after the first docetaxel dose was administered. Analysis of two blood samples taken 9 and 10 days after docetaxel administration showed an approximately fivefold increase in its AUC as well as the presence of paclitaxel in unquantifiable levels, 20 and 21 days after it was last administered. The authors of this case study propose that, in addition to CYP450 3A4 inhibition, P-gp inhibition due to amiodarone may have contributed to the interaction.

MANAGEMENT: The possibility of prolonged and/or increased pharmacologic effects of paclitaxel or docetaxel therapy should be considered during coadministration with P-gp inhibitors, including adverse effects such as myelosuppression, stomatitis, neurotoxicity (e.g., paraesthesia, dysesthesia, pain), myalgia, asthenia, fluid retention, nausea, vomiting, and diarrhea. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate whenever a P-gp inhibitor is added to or withdrawn from therapy.

References

  1. (2001) "Product Information. Taxotere (docetaxel)." Rhone Poulenc Rorer
  2. Aronson JK, Grahame-Smith DG (1981) "Clinical pharmacology: adverse drug interactions." Br Med J, 282, p. 288-91
  3. McInnes GT, Brodie MJ (1988) "Drug interactions that matter: a critical reappraisal." Drugs, 36, p. 83-110
  4. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  5. Yong WP, Wang LZ, Tham LS, et al. (2008) "A phase I study of docetaxel with ketoconazole modulation in patients with advanced cancers." Cancer Chemother Pharmacol, 62, p. 243-51
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Engels FK, Mathot RA, Loos WJ, van Schaik RH, Verweij J (2006) "Influence of high-dose ketoconazole on the pharmacokinetics of docetaxel." Cancer Biol Ther, 5, p. 833-9
  8. Vodovar D, Arnaout M, Mongardon N, et al. (2011) "Severe docetaxel overdose induced by pharmacokinetic interaction with dronedarone." J Clin Oncol, 29, e694-5
  9. Starr SP, Hammann F, Gotta V, et al. (2016) "Pharmacokinetic interaction between taxanes and amiodarone leading to severe toxicity." Br J Clin Pharmacol, 450, p. 22-27
View all 9 references

Switch to consumer interaction data

Drug and food interactions

Major

DOCEtaxel food

Applies to: Docefrez (docetaxel)

GENERALLY AVOID: Coadministration with inhibitors of CYP450 3A4, such as grapefruit juice, may significantly increase the plasma concentrations of docetaxel, which is a substrate of the isoenzyme. Current data suggest that consumption of large quantities of grapefruit juice inhibit both intestinal and hepatic CYP450 3A4 due to certain compounds present in grapefruit. In a pharmacokinetic study consisting of 7 cancer patients, mean dose-normalized docetaxel systemic exposure (AUC) increased by 2.2-fold and clearance decreased by 49% when intravenous docetaxel was given at a reduced dosage of 10 mg/m2 in combination with the potent CYP450 3A4 inhibitor ketoconazole (200 mg orally once daily for 3 days) compared to docetaxel administered alone at 100 mg/m2. In addition, a case report of a 52-year-old woman with esophageal squamous cell carcinoma receiving a twice weekly chemotherapy regimen including intravenous docetaxel (40 mg/m2) reported that docetaxel AUC increased by 65% compared with the AUC target of 1.96 mg*h/L and clearance decreased by 63%, with a 71% reduction in the patient's neutrophil count. In the absence of other CYP450 3A4 inhibitors, these effects were attributed to daily consumption of 250 mL of grapefruit juice, which the patient had been consuming for at least 3 months. Two weeks after the patient ceased the grapefruit juice, the docetaxel AUC was closer to the target value and the neutrophil count reduction was less than 35%.

MANAGEMENT: The use of docetaxel in combination with grapefruit and grapefruit juice should generally be avoided. If concomitant use is required, a reduced dosage of docetaxel should be considered, particularly if used with large amounts of grapefruit juice, and therapeutic drug monitoring of docetaxel considered per local treatment protocols. Patients should be closely monitored for the development of docetaxel toxicity such as myelosuppression, stomatitis, neurotoxicity (e.g., paraesthesia, dysesthesia, pain), myalgia, asthenia, fluid retention, nausea, vomiting, and diarrhea.

References

  1. (2001) "Product Information. Taxotere (docetaxel)." Rhone Poulenc Rorer
  2. Aronson JK, Grahame-Smith DG (1981) "Clinical pharmacology: adverse drug interactions." Br Med J, 282, p. 288-91
  3. McInnes GT, Brodie MJ (1988) "Drug interactions that matter: a critical reappraisal." Drugs, 36, p. 83-110
  4. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  5. Yong WP, Wang LZ, Tham LS, et al. (2008) "A phase I study of docetaxel with ketoconazole modulation in patients with advanced cancers." Cancer Chemother Pharmacol, 62, p. 243-51
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Engels FK, Mathot RA, Loos WJ, van Schaik RH, Verweij J (2006) "Influence of high-dose ketoconazole on the pharmacokinetics of docetaxel." Cancer Biol Ther, 5, p. 833-9
  8. Valenzuela B, Rebollo J, Perez T, Brugarolas A, Perez-Ruixo JJ (2011) "Effect of grapefruit juice on the pharmacokinetics of docetaxel in cancer patients: a case report." Br J Clin Pharmacol
  9. Starr SP, Hammann F, Gotta V, et al. (2016) "Pharmacokinetic interaction between taxanes and amiodarone leading to severe toxicity." Br J Clin Pharmacol, 450, p. 22-27
View all 9 references

Switch to consumer interaction data

Moderate

quiNIDine food

Applies to: Nuedexta (dextromethorphan / quinidine)

GENERALLY AVOID: In a small, randomized, crossover study, the administration of quinidine with grapefruit juice (compared to water) to healthy volunteers significantly prolonged the time to reach peak plasma quinidine concentrations and decreased the plasma concentrations of its major metabolite, 3-hydroxyquinidine. These changes were associated pharmacodynamically with both a delay and a reduction in the maximal effect on QTc interval. The proposed mechanism is delay of gastric emptying as well as inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits.

MANAGEMENT: Given the drug's narrow therapeutic index, patients receiving quinidine therapy should avoid the consumption of grapefruits and grapefruit juice to prevent any undue fluctuations in plasma drug levels.

References

  1. Ace LN, Jaffe JM, Kunka RL (1983) "Effect of food and an antacid on quinidine bioavailability." Biopharm Drug Dispos, 4, p. 183-90
  2. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  3. Ha HR, Chen J, Leuenberger PM, Freiburghaus AU, Follah F (1995) "In vitro inhibition of midazolam and quinidine metabolism by flavonoids." Eur J Clin Pharmacol, 48, p. 367-71
  4. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
View all 4 references

Switch to consumer interaction data

Moderate

dextromethorphan food

Applies to: Nuedexta (dextromethorphan / quinidine)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.