Skip to main content

Drug Interactions between disopyramide and Sublocade

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

disopyramide buprenorphine

Applies to: disopyramide and Sublocade (buprenorphine)

GENERALLY AVOID: Buprenorphine administered transdermally at a higher than recommended dosage has been associated with prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In healthy volunteers, there was no difference in the effect of buprenorphine 10 mcg/hr administered transdermally on the QT interval compared to placebo. However, buprenorphine 40 mcg/hr (twice the maximum recommended dosage) was associated with a mean prolongation of the QT interval of 5.9 msec compared to placebo. Buprenorphine 20 mcg/hr was not studied. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: According to the product labeling, use of buprenorphine transdermal films should be avoided in patients treated with class IA (e.g., disopyramide, quinidine, procainamide) or class III (e.g., amiodarone, dofetilide, sotalol) antiarrhythmic agents. A dosage of 20 mcg/hr should not be exceeded in patients receiving the buprenorphine transdermal system. Patients should be advised to seek medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, palpitations, or syncope.

References

  1. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  2. (2010) "Product Information. Butrans (buprenorphine)." Purdue Pharma LP

Switch to consumer interaction data

Drug and food interactions

Major

buprenorphine food

Applies to: Sublocade (buprenorphine)

GENERALLY AVOID: Concomitant use of buprenorphine with benzodiazepines or other central nervous system (CNS) depressants (e.g., nonbenzodiazepine sedatives/hypnotics, anxiolytics, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol) may increase the risk of buprenorphine overdose, severe respiratory depression, coma, and death. Reported cases have primarily occurred in the setting of buprenorphine maintenance treatment for opiate addiction, and many, but not all, involved abuse or misuse of buprenorphine including intravenous self-injection. The mechanism of interaction probably involves some degree of additive pharmacologic effects. Preclinical studies also suggest that benzodiazepines can alter the usual ceiling effect on buprenorphine-induced respiratory depression and render the respiratory effects of buprenorphine appear similar to those of full opioid agonists. Coadministration of buprenorphine with some CNS depressants such as alcohol, benzodiazepines, and phenothiazines may also increase the risk of hypotension.

MANAGEMENT: The use of opioids in conjunction with benzodiazepines or other CNS depressants should generally be avoided unless alternative treatment options are inadequate. If coadministration is necessary, the dosage and duration of each drug should be limited to the minimum required to achieve desired clinical effect. Patients should be monitored closely for signs and symptoms of respiratory depression and sedation, and advised to avoid driving or operating hazardous machinery until they know how these medications affect them. Extreme caution is advised when prescribing buprenorphine to patients who are addicted to opioids and also abusing benzodiazepines or alcohol. Due to potential risk of overdose and death, dependence on sedative-hypnotics such as benzodiazepines or alcohol is considered a relative contraindication for office-based buprenorphine treatment of opioid addiction. For patients who have been receiving extended therapy with both an opioid and a benzodiazepine and require discontinuation of either medication, a gradual tapering of dose is advised, since abrupt withdrawal may lead to withdrawal symptoms. Severe cases of benzodiazepine withdrawal, primarily in patients who have received excessive doses over a prolonged period, may result in numbness and tingling of extremities, hypersensitivity to light and noise, hallucinations, and epileptic seizures.

References

  1. (2002) "Product Information. Suboxone (buprenorphine-naloxone)." Reckitt and Colman Pharmaceuticals Inc
  2. Kilicarslan T, Sellers EM (2000) "Lack of interaction of buprenorphine with flunitrazepam metabolism." Am J Psychiatry, 157, p. 1164-6
  3. Reynaud M, Petit G, Potard D, Courty P (1998) "Six deaths linked to concomitant use of buprenorphine and benzodiazepines." Addiction, 93, p. 1385-92
  4. Tracqui A, Kintz P, Ludes B (1998) "Buprenorphine-related deaths among drug addicts in France: a report on 20 fatalities." J Anal Toxicol, 22, p. 430-4
  5. Reynaud M, Tracqui A, Petit G, Potard D, Courty P (1998) "Six deaths linked to misuse of buprenorphine-benzodiazepine combinations." Am J Psychiatry, 155, p. 448-9
  6. Kintz P (2002) "A new series of 13 buprenorphine-related deaths." Clin Biochem, 35, p. 513-6
  7. Martin HA (2011) "The possible consequences of combining lorazepam and buprenorphine/naloxone: a case review." J Emerg Nurs, 37, p. 200-2
  8. Hakkinen M, Launiainen T, Vuori E, Ojanpera I (2012) "Benzodiazepines and alcohol are associated with cases of fatal buprenorphine poisoning." Eur J Clin Pharmacol, 68, p. 301-9
  9. Substance Abuse and Mental Health Services Administration (US) (2013) Clinical Guidelines for the Use of Buprenorphine in the Treatment of Opioid Addiction. Treatment Improvement Protocol (TIP) Series, No. 40 http://www.ncbi.nlm.nih.gov/books/NBK64245/
  10. Schuman-Olivier Z, Hoeppner BB, Weiss RD, Borodovsky J, Shaffer HJ, Albanese MJ (2013) "Benzodiazepine use during buprenorphine treatment for opioid dependence: clinical and safety outcomes." Drug Alcohol Depend, 132, p. 580-6
  11. Ferrant O, Papin F, Clin B, et al. (2011) "Fatal poisoning due to snorting buprenorphine and alcohol consumption." Forensic Sci Int, 204, e8-11
  12. Pirnay S, Borron SW, Giudicelli CP, Tourneau J, Baud FJ, Ricordel I (2004) "A critical review of the causes of death among post-morten toxicological investigations: analysis of 34 buprenorphine-associated and 35 methadone-associated deaths." Addiction, 99, p. 978-88
  13. Kintz P (2001) "Deaths involving buprenorphine: a compendium of French cases." Forensic Sci Int, 121, p. 65-9
  14. Sekar M, Mimpriss TJ (1987) "Buprenorphine, benzodiazepines and prolonged respiratory depression." Anaesthesia, 42, p. 567-8
  15. Gueye PN, Borron SW, Risede P, et al. (2002) "Buprenorphine and midazolalm act in combination to depress respiration in rats." Toxicol Sci, 65, p. 107-14
  16. US Food and Drug Administration (2016) FDA warns about serious risks and death when combining opioid pain or cough medicines with benzodiazepines; requires its strongest warning. http://www.fda.gov/downloads/Drugs/DrugSafety/UCM518672.pdf
View all 16 references

Switch to consumer interaction data

Moderate

disopyramide food

Applies to: disopyramide

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  4. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  22. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  23. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  25. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  32. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Minor

disopyramide food

Applies to: disopyramide

Ethanol significantly increases the renal elimination of disopyramide, apparently by inducing diuresis (inhibition of antidiuretic hormone). Limited data show that ethanol does not, however, significantly affect the elimination half-life or total plasma clearance of disopyramide. No special precautions appear to be necessary.

References

  1. Olsen H, Bredesen JE, Lunde PK (1983) "Effect of ethanol intake on disopyramide elimination by healthy volunteers." Eur J Clin Pharmacol, 25, p. 103-5

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.