Skip to main content

Drug Interactions between diltiazem and tamsulosin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

dilTIAZem tamsulosin

Applies to: diltiazem and tamsulosin

MONITOR: Coadministration with inhibitors of CYP450 3A4 and/or 2D6 may increase the plasma concentrations of tamsulosin, which is primarily metabolized in the liver by these isoenzymes. In 24 healthy volunteers, administration of a single 0.4 mg dose of tamsulosin with the potent CYP450 3A4 inhibitor ketoconazole (400 mg once daily for 5 days) resulted in a 2.2-fold increase in tamsulosin peak plasma concentration (Cmax) and a 2.8-fold increase in systemic exposure (AUC) compared to administration alone. Likewise, concomitant treatment with the potent CYP450 2D6 inhibitor paroxetine (20 mg once daily for 9 days) resulted in an increase in the Cmax and AUC of a single 0.4 mg dose of tamsulosin by a factor of 1.3 and 1.6, respectively. The effects of concomitant administration of a moderate CYP450 3A4 inhibitor such as erythromycin or a moderate CYP450 2D6 inhibitor such as terbinafine on the pharmacokinetics of tamsulosin have not been evaluated. The effects of coadministration of both a CYP450 3A4 and a CYP450 2D6 inhibitor have also not been evaluated. However, there is a potential for significant increase in tamsulosin exposure relative to coadministration with either inhibitor alone. Similarly, a significant increase in exposure may occur when tamsulosin is administered with a CYP450 3A4 inhibitor to individuals who have genetic polymorphisms of CYP450 2D6 resulting in reduced or absent enzyme activity, or so-called CYP450 2D6 poor metabolizers (approximately 7% of Caucasians and less than 2% of Asians and individuals of African descent).

MANAGEMENT: Caution is advised if tamsulosin is used concomitantly with moderate CYP450 3A4 inhibitors (e.g., amiodarone, aprepitant, diltiazem, dronedarone, erythromycin, fluconazole, fluvoxamine, fusidic acid, imatinib, isavuconazonium, verapamil) and/or moderate to potent CYP450 2D6 inhibitors (e.g., abiraterone, bupropion, celecoxib, cinacalcet, darifenacin, dronedarone, duloxetine, fluoxetine, lorcaserin, paroxetine, propafenone, quinidine, ranolazine, rolapitant, terbinafine), particularly at a dosage higher than 0.4 mg/day. The potential for increased risk of adverse effects such as postural hypotension, syncope, and priapism should be considered. It should be noted that rolapitant, a moderate CYP450 2D6 inhibitor, can increase plasma concentrations and the risk of adverse effects of tamsulosin for at least 28 days after administration of rolapitant. Patients should be advised to avoid rising abruptly from a sitting or recumbent position, and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients should also avoid driving or operating hazardous machinery until they know how the medication affects them.

References

  1. (2001) "Product Information. Flomax (tamsulosin)." Boehringer-Ingelheim
  2. Franco-Salinas G, de la Rosette JJ, Michel MC (2010) "Pharmacokinetics and pharmacodynamics of tamsulosin in its modified-release and oral controlled absorption system formulations." Clin Pharmacokinet, 49, p. 177-88
  3. Kamimura H, Oishi S, Matsushima H, et al. (1998) "Identification of cytochrome P450 isozymes involved in metabolism of the alpha1-adrenoceptor blocker tamsulosin in human liver microsomes." Xenobiotica, 28, p. 909-22
  4. (2015) "Product Information. Varubi (rolapitant)." Tesaro Inc.
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Moderate

dilTIAZem food

Applies to: diltiazem

MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.

References

  1. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  2. Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A (1994) "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie, 49, p. 675-9
  3. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  4. Christensen H, Asberg A, Holmboe AB, Berg KJ (2002) "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol, 58, p. 515-520
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 5 references

Switch to consumer interaction data

Moderate

tamsulosin food

Applies to: tamsulosin

ADJUST DOSING INTERVAL: Food may delay the gastrointestinal absorption of tamsulosin. The time to maximum plasma concentration (Tmax) is reached by 4 to 5 hours under fasted conditions and by 6 to 7 hours when tamsulosin is administered with food. The delay in Tmax has the desirable effect of smoothing the tamsulosin plasma concentration profile, thereby reducing fluctuation of the plasma peak and trough concentrations with multiple dosing. Food may also affect the extent of absorption of tamsulosin. It has been reported that taking tamsulosin under fasted conditions results in a 30% increase in bioavailability (AUC) and 40% to 70% increase in peak plasma concentration (Cmax) compared to fed conditions. The effects of food on the pharmacokinetics of tamsulosin are consistent regardless of whether tamsulosin is taken with a light meal or a high-fat meal.

MANAGEMENT: To ensure uniformity of absorption, tamsulosin should be administered approximately one-half hour following the same meal each day.

References

  1. (2001) "Product Information. Flomax (tamsulosin)." Boehringer-Ingelheim

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: diltiazem

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.