Drug Interactions between diltiazem and pralsetinib
This report displays the potential drug interactions for the following 2 drugs:
- diltiazem
- pralsetinib
Interactions between your drugs
dilTIAZem pralsetinib
Applies to: diltiazem and pralsetinib
GENERALLY AVOID: Coadministration with P-glycoprotein (P-gp) inhibitors and/or moderate CYP450 3A4 inhibitors may significantly increase the plasma concentrations of pralsetinib, which is both a substrate of the P-gp efflux transporter and primarily metabolized by CYP450 3A4. Physiologically based pharmacokinetic (PBPK) modeling was used to evaluate these potential interactions. Coadministration of a single dose of the P-gp inhibitor cyclosporine (600 mg) is predicted to increase the peak plasma concentration (Cmax) and systemic exposure (AUC) of pralsetinib (200 mg) by 1.5- and 1.8-fold, respectively. Likewise, concomitant use of the moderate CYP450 3A4 inhibitor fluconazole (400 mg once daily) is predicted to increase the Cmax and AUC of pralsetinib by 1.2- and 1.7-fold, respectively. Similarly, coadministration with the combined P-gp and moderate CYP450 3A4 inhibitor verapamil (80 mg three times daily) is predicted to increase the Cmax and AUC of pralsetinib by 1.6- and 2.1-fold, respectively. Increased exposure to pralsetinib may increase the risk of serious adverse effects such as interstitial lung disease/pneumonitis, liver transaminase elevations, hypertension, and hemorrhage. Some clinical trials have also observed prolongation of the QT interval in patients on pralsetinib, though this was not observed in a study of 34 patients with rearranged during transfection (RET)-altered solid tumors on pralsetinib at the recommended dosage.
MANAGEMENT: Concomitant use of pralsetinib with P-gp inhibitors, moderate CYP450 3A4 inhibitors, or combined P-gp and moderate CYP450 3A4 inhibitors should be avoided when possible. If coadministration is necessary, the manufacturer recommends reducing the dose of pralsetinib as follows: 300 mg once daily for patients receiving 400 mg once daily, 200 mg once daily for patients receiving 300 mg once daily, and 100 mg once daily for patients receiving 200 mg once daily. Additional dose adjustments may be required depending on the ability of the patient to tolerate the combination. Following discontinuation of the P-gp inhibitor, moderate CYP450 3A4 inhibitor, or combined P-gp and moderate CYP450 3A4 inhibitor, and after an appropriate washout period (3 to 5 elimination half-lives), the pralsetinib dose taken prior to initiating the inhibitor may be resumed. The product labeling of the co-administered drug should also be consulted for further guidance; for example, in instances when its inhibitory profile may be affected by dose or dosage form.
References (4)
- (2023) "Product Information. Gavreto (pralsetinib)." Roche Products Pty Ltd, GAVRETO 20230406
- (2024) "Product Information. Gavreto (pralsetinib)." Genentech
- (2024) "Product Information. Gavreto (pralsetinib)." Roche Products Ltd
- (2024) "Product Information. Gavreto (pralsetinib)." Hoffmann-La Roche Limited
Drug and food interactions
pralsetinib food
Applies to: pralsetinib
ADJUST DOSING INTERVAL: Food significantly increases the oral bioavailability of pralsetinib. According to the product labeling, administration of pralsetinib (200 mg) with a high-fat meal (approximately 800 to 1000 calories; 50% to 60% from fat) increased mean pralsetinib peak plasma concentration (Cmax) and systemic exposure (AUC) by 104% and 122%, respectively. The median time to maximum concentration (Tmax) was delayed from 4 hours to 8.5 hours, when compared to the fasted state.
GENERALLY AVOID: The juice of grapefruit and/or Seville oranges may increase the plasma concentrations of pralsetinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit and Seville oranges. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to pralsetinib may increase the risk of adverse effects such as interstitial lung disease/pneumonitis, liver transaminase elevations, hypertension, and hemorrhage. Some clinical trials have also observed prolongation of the QT interval in patients on pralsetinib, though this was not observed in a study of 34 patients with rearranged during transfection (RET)-altered solid tumors on pralsetinib at the recommended dosage.
MANAGEMENT: Pralsetinib should be administered on an empty stomach, with no food intake recommended for at least 2 hours before and at least 1 hour after taking the medication. Patients should avoid consumption of grapefruit, grapefruit juice, Seville oranges, or Seville orange juice during treatment with pralsetinib.
References (4)
- (2023) "Product Information. Gavreto (pralsetinib)." Roche Products Pty Ltd, GAVRETO 20230406
- (2024) "Product Information. Gavreto (pralsetinib)." Genentech
- (2024) "Product Information. Gavreto (pralsetinib)." Roche Products Ltd
- (2024) "Product Information. Gavreto (pralsetinib)." Hoffmann-La Roche Limited
dilTIAZem food
Applies to: diltiazem
MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.
MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.
MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.
References (5)
- Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
- Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A (1994) "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie, 49, p. 675-9
- Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
- Christensen H, Asberg A, Holmboe AB, Berg KJ (2002) "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol, 58, p. 515-520
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
dilTIAZem food
Applies to: diltiazem
MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.
MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.
References (14)
- Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
- Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
- Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
- Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
- O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
- Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
- Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
- Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
- Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
- Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
- Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
- McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
- Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
- Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.