Skip to main content

Drug Interactions between Diltia XT and Qualaquin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

dilTIAZem quiNINE

Applies to: Diltia XT (diltiazem) and Qualaquin (quinine)

MONITOR: Coadministration with inhibitors of CYP450 3A4 may increase the plasma concentrations of quinine, which is primarily metabolized by the isoenzyme. In ten healthy volunteers, administration of a single 600 mg oral dose of quinine sulfate in combination with the potent CYP450 3A4 inhibitor troleandomycin (500 mg orally every 8 hours for 48 hours) significantly increased the mean quinine peak plasma concentration (Cmax), systemic exposure (AUC) and terminal elimination half-life by 26%, 90% and 63%, respectively, and decreased the mean oral clearance (Cl/F) by 45% compared to administration of quinine alone. Troleandomycin also reduced the average Cmax, AUC and apparent formation clearance of the main metabolite, 3-hydroxyquinine, by 75%, 58% and 81%, respectively. Likewise, in a study of nine healthy volunteers, administration of a single 500 mg oral dose of quinine hydrochloride in combination with another potent CYP450 3A4 inhibitor ketoconazole (100 mg twice daily for 3 days) resulted in a 45% increase in mean quinine AUC and a 31% decrease in mean oral clearance compared to administration of quinine alone. Clinically, high plasma levels of quinine may increase the risk of QT interval prolongation, which has been associated with ventricular arrhythmias including torsade de pointes and sudden death. Fatal torsade de pointes arrhythmia was reported in an elderly patient who received quinine in combination with erythromycin, a moderately potent CYP450 3A4 inhibitor, and dopamine. However, a causal relationship was not established in this case. The risk of other quinine toxicities such as cinchonism may also be increased.

MANAGEMENT: Caution is advised if quinine is used in combination with potent and moderate CYP450 3A4 inhibitors. Patients should be monitored closely for adverse reactions associated with quinine such as hematologic toxicities and cardiac arrhythmias including torsade de pointes and atrial fibrillation. Patients should be advised to contact their physician if they experience increased side effects such as headache, flushing, sweating, nausea, vomiting, diarrhea, abdominal pain, tinnitus, dizziness, vertigo, hearing impairment, blurred vision, vision impairment, and irregular heart rhythm.

References

  1. Zhao XJ, Ishizaki T "Metabolic interactions of selected antimalarial and non-antimalarial drugs with the major pathway (3-hydroxylation) of quinine in human liver microsomes." Br J Clin Pharmacol 44 (1997): 505-11
  2. Mirghani RA, Hellgren U, Westerberg PA, Ericsson O, Bertilsson L, Gustafsson LL "The roles of cytochrome P450 3A4 and 1A2 in the 3-hydroxylation of quinine in vivo." Clin Pharmacol Ther 66 (1999): 454-60
  3. Zhao XJ, Ishizaki T "A further interaction study of quinine with clinically important drugs by human liver microsomes: determinations of inhibition constant (K-i) and type of inhibition." Eur J Drug Metab Pharm 24 (1999): 272-8
  4. Wanwimolruk S, Paine MF, Pusek SN, Watkins PB "Is quinine a suitable probe to assess the hepatic drug-metabolizing enzyme CYP3A4?" Br J Clin Pharmacol 54 (2002): 643-51
  5. Mirghani RA, Ericsson O, Tybring G, Gustafsson LL, Bertilsson L "Quinine 3-hydroxylation as a biomarker reaction for the activity of CYP3A4 in man." Eur J Clin Pharmacol 59 (2003): 23-8
  6. Mirghani RA, Hellgren U, Bertilsson L, Gustafsson LL, Ericsson O "Metabolism and elimination of quinine in healthy volunteers." Eur J Clin Pharmacol (2003):
  7. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  8. "Product Information. Qualaquin (quinine)." AR Scientific Inc (2006):
  9. Cerner Multum, Inc. "Australian Product Information." O 0
  10. Zhang H, Coville PF, Walker RJ, Miners JO, Birkett DJ, Wanwimolruk S "Evidence for involvement of human CYP3A in the 3-hydroxylation of quinine." Br J Clin Pharmacol 43 (1997): 245-52
  11. Mirghani RA, Yasar U, Zheng T, et al. "Enzyme kinetics for the formation of 3-hydroxyquinine and three new metabolites of quinine in vitro; 3-hydroxylation by CYP3A4 is indeed the major metabolic pathway." Drug Metab Dispos 30 (2002): 1368-71
View all 11 references

Switch to consumer interaction data

Drug and food interactions

Moderate

dilTIAZem food

Applies to: Diltia XT (diltiazem)

MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.

References

  1. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  2. Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie 49 (1994): 675-9
  3. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  4. Christensen H, Asberg A, Holmboe AB, Berg KJ "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol 58 (2002): 515-520
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
View all 5 references

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Diltia XT (diltiazem)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med 3 (1985): 334-6
  2. Moller IW "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth 59 (1987): 522-6
  3. Oszko MA, Klutman NE "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm 6 (1987): 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol 67 (1991): 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy 10 (1990): 247
  6. Woie L, Storstein L "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J 2 (1981): 239-42
  7. Morris DL, Goldschlager N "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA 249 (1983): 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol 27 (1987): 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M "Calcium gluconate in severe verapamil intoxication." N Engl J Med 330 (1994): 718-20
  10. Bar-Or D, Gasiel Y "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed) 282 (1981): 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med 8 (1982): 55-7
  12. McMillan R "Management of acute severe verapamil intoxication." J Emerg Med 6 (1988): 193-6
  13. Perkins CM "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J 2 (1978): 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol 17 (1980): 395-400
View all 14 references

Switch to consumer interaction data

Minor

quiNINE food

Applies to: Qualaquin (quinine)

Coadministration with grapefruit juice does not appear to affect the pharmacokinetics of quinine in a clinically relevant manner. Although grapefruit juice is an inhibitor of CYP450 3A4 and quinine is metabolized by this pathway to its major metabolite, 3-hydroxyquinine, a study of ten healthy volunteers found no significant differences in quinine peak plasma concentration (Cmax), time to reach Cmax (Tmax), terminal elimination half-life, systemic exposure (AUC), or apparent oral clearance (Cl/F) when a single 600 mg oral dose of quinine sulfate was administered in combination with 200 mL of orange juice (control), half-strength grapefruit juice, and full-strength grapefruit juice twice daily for 6 days each, separated by a 2-week washout period. Relative to the control period, the apparent renal clearance of quinine was markedly increased by 81% during treatment with half-strength grapefruit juice. However, since renal clearance accounts for approximately 6% of the total clearance of quinine, this change would likely have minimal clinical impact. The lack of a significant interaction is probably due to the fact that grapefruit juice primarily inhibits intestinal rather than hepatic CYP450 3A4, and quinine is not known to undergo significant presystemic metabolism as evidenced by its relatively high oral bioavailability (76% to 88%). Nevertheless, excessive consumption of grapefruit juice and tonic water (which contains quinine) was suspected as the cause of torsade de pointes arrhythmia in a patient with a history of asymptomatic long QT syndrome. Treatment with magnesium sulfate and metoprolol had no effect, but the arrhythmia resolved spontaneously 48 hours after discontinuation of the drinks. Based on current data, moderate grapefruit juice consumption is probably safe for the majority of patients taking quinine.

References

  1. Ho PC, Chalcroft SC, Coville PF, Wanwimolruk S "Grapefruit juice has no effect on quinine pharmacokinetics." Eur J Clin Pharmacol 55 (1999): 393-8
  2. Hermans K, Stockman D, Van den Branden F "Grapefruit and tonic: a deadly combination in a patient with the long QT syndrome." Am J Med 114 (2003): 511-2
  3. "Product Information. Qualaquin (quinine)." AR Scientific Inc (2006):
  4. Zhang H, Coville PF, Walker RJ, Miners JO, Birkett DJ, Wanwimolruk S "Evidence for involvement of human CYP3A in the 3-hydroxylation of quinine." Br J Clin Pharmacol 43 (1997): 245-52
  5. Mirghani RA, Yasar U, Zheng T, et al. "Enzyme kinetics for the formation of 3-hydroxyquinine and three new metabolites of quinine in vitro; 3-hydroxylation by CYP3A4 is indeed the major metabolic pathway." Drug Metab Dispos 30 (2002): 1368-71
View all 5 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.