Skip to main content

Drug Interactions between digoxin and Hydromide

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

HYDROcodone homatropine

Applies to: Hydromide (homatropine / hydrocodone) and Hydromide (homatropine / hydrocodone)

MONITOR: Coadministration of opioids with anticholinergic agents may result in additive central nervous system (CNS), gastrointestinal, and genitourinary effects. The risk and/or severity of adverse effects such as sedation, dizziness, confusion, cognitive and psychomotor impairment, dry mouth, constipation, and urinary retention may increase. Severe constipation may lead to paralytic ileus in some cases.

MANAGEMENT: Caution and close monitoring of central nervous system, gastrointestinal, and genitourinary adverse effects are recommended when opioids are used with anticholinergic agents. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. (2002) "Product Information. Demerol (meperidine)." Sanofi Winthrop Pharmaceuticals
  2. (2002) "Product Information. Dolophine (methadone)." Lilly, Eli and Company
  3. (2001) "Product Information. Tylenol with Codeine (acetaminophen-codeine)." Janssen Pharmaceuticals
  4. "Product Information. Duragesic Transdermal System (fentanyl)." Janssen Pharmaceutica, Titusville, NJ.
  5. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  6. (2001) "Product Information. OxyContin (oxycodone)." Purdue Frederick Company
  7. (2001) "Product Information. Kadian (morphine)." Astra-Zeneca Pharmaceuticals
  8. (2004) "Product Information. DepoDur (morphine liposomal)." Endo Laboratories LLC
  9. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  10. (2006) "Product Information. Opana (oxymorphone)." Endo Laboratories LLC
  11. (2009) "Product Information. Nucynta (tapentadol)." PriCara Pharmaceuticals
  12. (2010) "Product Information. Exalgo (hydromorphone)." Covidien
  13. (2016) "Product Information. Belbuca (buprenorphine)." Endo Pharmaceuticals Solutions Inc
  14. (2017) "Product Information. Alfentanil Hydrochloride (alfentanil)." Akorn Inc
  15. (2017) "Product Information. SUFentanil Citrate (sufentanil)." Akorn Inc
  16. (2017) "Product Information. Lortab (acetaminophen-hydrocodone)." Akorn Inc
  17. (2017) "Product Information. Levorphanol Tartrate (levorphanol)." Sentynl Therapeutics
  18. (2018) "Product Information. Naloxone HCl-Pentazocine HCl (naloxone-pentazocine)." Actavis U.S. (Amide Pharmaceutical Inc)
  19. (2018) "Product Information. Apadaz (acetaminophen-benzhydrocodone)." KemPharm, Inc
View all 19 references

Switch to consumer interaction data

Minor

digoxin homatropine

Applies to: digoxin and Hydromide (homatropine / hydrocodone)

Anticholinergic agents may increase the absorption and oral bioavailability of some digoxin formulations. The proposed mechanism involves increased gastrointestinal transit time due to reduction of stomach and intestinal motility by anticholinergic agents. In one study, coadministration with propantheline (15 mg three times a day for 10 days) led to a 30% mean increase in serum digoxin levels in 9 of 13 elderly women receiving a slow-dissolution formulation of digoxin. The interaction has also been reported with formulations containing large particle size digoxin. Other studies have found no significant effect of propantheline on digoxin elixir, solution in capsules, rapid-dissolution tablets, and micronized digoxin tablets. Therefore, the interaction is not expected to occur with most digoxin products used today in industrialized countries (e.g., Lanoxin). Due to the drug's narrow therapeutic index, however, clinicians may consider monitoring patients more closely for digoxin side effects and toxicity during coadministration with anticholinergic agents. Patients should be advised to notify their physician if they experience potential signs and symptoms of digoxin toxicity such as nausea, anorexia, visual disturbances, slow pulse, and irregular heartbeats.

References

  1. Brown DD, Schmid J, Long RA, Hull JH (1985) "A steady-state evaluation of the effects of propantheline bromide and cholestyramine on the bioavailability of digoxin when administered as tablets or capsules." J Clin Pharmacol, 25, p. 360-4
  2. Binnion PF, McDermott M, LeSher D (1973) "Bioavailability of digoxin." Lancet, 1, p. 1118
  3. Johnson BF, O'Grady J, Bye C (1978) "The influence of digoxin particle size on absorption of digoxin and the effect of propantheline and metoclopramide." Br J Clin Pharmacol, 5, p. 465-7
  4. Manninen V, Apajalahti A, Simonen H, Reissell P (1973) "Effect of propantheline and metoclopramide on absorption of digoxin." Lancet, 1, p. 1118-9
  5. (2001) "Product Information. Lanoxicaps (digoxin)." Glaxo Wellcome
View all 5 references

Switch to consumer interaction data

Drug and food interactions

Major

HYDROcodone food

Applies to: Hydromide (homatropine / hydrocodone)

GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including hydrocodone. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

GENERALLY AVOID: Consumption of alcohol while taking some sustained-release formulations of hydrocodone may cause rapid release of the drug, resulting in high systemic levels of hydrocodone that may be potentially lethal. Alcohol apparently can disrupt the release mechanism of some sustained-release formulations. In study subjects, the rate of absorption of hydrocodone from an extended-release formulation was found to be affected by coadministration with 40% alcohol in the fasted state, as demonstrated by an average 2.4-fold (up to 3.9-fold in one subject) increase in hydrocodone peak plasma concentration and a decrease in the time to peak concentration. Alcohol also increased the extent of absorption by an average of 1.2-fold (up to 1.7-fold in one subject).

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of hydrocodone. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism of hydrocodone by certain compounds present in grapefruit. Increased hydrocodone concentrations could conceivably increase or prolong adverse drug effects and may cause potentially fatal respiratory depression.

MANAGEMENT: Patients taking sustained-release formulations of hydrocodone should not consume alcohol or use medications that contain alcohol. In general, potent narcotics such as hydrocodone should not be combined with alcohol. Patients should also avoid consumption of grapefruit or grapefruit juice during treatment with hydrocodone.

References

  1. (2013) "Product Information. Zohydro ER (hydrocodone)." Zogenix, Inc

Switch to consumer interaction data

Minor

digoxin food

Applies to: digoxin

Administration of digoxin with a high-fiber meal has been shown to decrease its bioavailability by almost 20%. Fiber can sequester up to 45% of the drug when given orally. Patients should be advised to maintain a regular diet without significant fluctuation in fiber intake while digoxin is being titrated.

Grapefruit juice may modestly increase the plasma concentrations of digoxin. The mechanism is increased absorption of digoxin due to mild inhibition of intestinal P-glycoprotein by certain compounds present in grapefruits. In 12 healthy volunteers, administration of grapefruit juice with and 30 minutes before, as well as 3.5, 7.5, and 11.5 hours after a single digoxin dose (0.5 mg) increased the mean area under the plasma concentration-time curve (AUC) of digoxin by just 9% compared to administration with water. Moreover, P-glycoprotein genetic polymorphism does not appear to influence the magnitude of the effects of grapefruit juice on digoxin. Thus, the interaction is unlikely to be of clinical significance.

References

  1. Darcy PF (1995) "Nutrient-drug interactions." Adverse Drug React Toxicol Rev, 14, p. 233-54
  2. Becquemont L, Verstuyft C, Kerb R, et al. (2001) "Effect of grapefruit juice on digoxin pharmacokinetics in humans." Clin Pharmacol Ther, 70, p. 311-6

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.