Skip to main content

Drug Interactions between dicumarol and elagolix / estradiol / norethindrone

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

estradiol dicumarol

Applies to: elagolix / estradiol / norethindrone and dicumarol

MONITOR CLOSELY: Concomitant therapy with estrogen-containing medications may diminish the therapeutic effects of vitamin K antagonists. In a pharmacokinetic study of 7 healthy women receiving oral contraceptives containing ethinyl-estradiol or mestranol, the clearance of a single dose of phenprocoumon increased by 25% leading to reduced systemic exposure of the anticoagulant when compared to matched controls receiving no oral contraceptives. Additionally, estrogens can increase the plasma levels of certain clotting factors such as fibrinogen, prothrombin, and factors VII and VIII in a dose-dependent manner, resulting in increased risk of thromboembolism, stroke, and/or myocardial infarction. The risk may be further increased by lifestyle factors such as smoking and lack of exercise.

MANAGEMENT: Close clinical and laboratory monitoring of the International Normalized Ratio (INR) are recommended if estrogen-containing medications cannot be avoided in patients receiving anticoagulant therapy with vitamin K antagonists. Patients should be advised to promptly notify their doctor if they experience potential signs and symptoms of blood clots such as chest pain, shortness of breath, sudden loss of vision, and pain, redness or swelling in an extremity.

References (8)
  1. Ku LL, Ward CO, Durgin SJ (1970) "A clinical study of drug interaction and anticoagulant therapy." Drug Intell Clin Pharm, 4, p. 300-6
  2. Koch-Weser J, Sellers EM (1971) "Drug interactions with coumarin anticoagulants (second of two parts)." N Engl J Med, 285, p. 547-58
  3. Schrogie JJ, Solomon HM, Zieve PD (1967) "Effect of oral contraceptives on vitamin K-dependent clotting activity." Clin Pharmacol Ther, 8, p. 670-5
  4. Notelovitz M (1985) "Oral contraception and coagulation." Clin Obstet Gynecol, 28, p. 73-83
  5. Meade TW (1982) "Oral contraceptives, clotting factors, and thrombosis." Am J Obstet Gynecol, 142, p. 758-61
  6. Stangel JJ, Innerfield I, Reyniak JV, Stone ML (1977) "The effect of conjugated estrogens on coagulability in menopausal women." Obstet Gynecol, 49, p. 314-6
  7. von Kaulla E, Droegemueller W, von Kaulla KN (1975) "Conjugated estrogens and hypercoagulability." Am J Obstet Gynecol, 122, p. 688-92
  8. monig h, Baese C, heidemann ht, Ohnhaus EE, schulte hm (1990) "Effect of oral contraceptive steroids on the pharmacokinetics of phenprocoumon" Br J Clin Pharmacol, 30, p. 115-8
Moderate

estradiol elagolix

Applies to: elagolix / estradiol / norethindrone and elagolix / estradiol / norethindrone

GENERALLY AVOID: Since endometriosis is fueled by estrogen, coadministration with estrogen-containing medications including combination oral contraceptive pills is expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives is unknown. Elagolix is a gonadotropin-releasing hormone (GnRH) receptor antagonist that inhibits endogenous GnRH signaling by binding competitively to GnRH receptors in the pituitary gland. Administration of elagolix results in dose-dependent suppression of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), leading to decreased levels of the ovarian sex hormones, estradiol and progesterone.

MANAGEMENT: Women requiring contraception should be advised to use non-hormonal forms of contraception during treatment with elagolix and for one week after its discontinuation.

References (1)
  1. (2018) "Product Information. Orilissa (elagolix)." AbbVie US LLC
Moderate

norethindrone elagolix

Applies to: elagolix / estradiol / norethindrone and elagolix / estradiol / norethindrone

ADDITIONAL CONTRACEPTION RECOMMENDED: Coadministration with inducers of CYP450 3A4 may decrease the plasma concentrations of estrogens and progestins. Estrogens have been shown in in vitro and in vivo studies to be partially metabolized by CYP450 3A4, and other steroids including progestins are also believed to undergo metabolism by this isoenzyme. The interaction has been reported primarily with oral contraceptives. There have been case reports of menstrual breakthrough bleeding or unwanted pregnancy in women receiving low-dose oral contraceptives following the addition of known CYP450 3A4 inducers such as carbamazepine, phenobarbital, phenytoin, rifampin, and St. John's wort. Inadequate response to estrogen replacement therapy has also been reported in a patient treated with phenytoin. Aminoglutethimide, a CYP450 3A4 inducer, has been shown to decrease medroxyprogesterone and megestrol serum levels by 74% in six patients stabilized on their progestin regimen.

MANAGEMENT: Pharmacologic response to estrogens and progestins should be monitored more closely whenever a CYP450 3A4 inducer is added to or withdrawn from therapy, and the hormone dosage adjusted as necessary. For patients receiving hormonal contraceptives, additional or alternative non-hormonal birth control may be advisable during concomitant therapy with CYP450 3A4 inducers. Additional or alternative non-hormonal birth control may be recommended beyond discontinuation of the CYP450 3A4 inducer(s). Individual product labeling should be consulted for specific time frames. Intrauterine systems are unlikely to be significantly affected because of their local action. Input from a gynecologist or similar expert on adequate contraception, including emergency contraception, should be sought as needed. Patients using replacement therapy should be advised to notify their physician if they experience inadequate control of symptoms associated with estrogen deficiency (e.g., nocturnal sweating, vasomotor disturbances, atrophic vaginitis) or changes in the uterine bleeding profile.

References (47)
  1. Crawford P, Chadwick DJ, Martin C, et al. (1990) "The interaction of phenytoin and carbamazepine with combined oral contraceptive steroids." Br J Clin Pharmacol, 30, p. 892-6
  2. Venkatesan K (1992) "Pharmacokinetic drug interactions with rifampicin." Clin Pharmacokinet, 22, p. 47-65
  3. Borcherding SM, Baciewicz AM, Self TH (1992) "Update on rifampin drug interactions." Arch Intern Med, 152, p. 711-6
  4. Weber JC (1984) "Interaction between oral contraceptives and griseofulvin." Br Med J, 288, p. 1125-6
  5. McDaniel PA, Caldroney RD (1986) "Oral contraceptives and griseofulvin interaction." Drug Intell Clin Pharm, 20, p. 384
  6. Cote J (1990) "Interaction of griseofulvin and oral contraceptives." J Am Acad Dermatol, 22, p. 124-5
  7. Baciewicz AM (1985) "Oral contraceptive drug interactions." Ther Drug Monit, 7, p. 26-35
  8. Skolnick JL, Stoler BS, Katz DB, Anderson WH (1976) "Rifampin, oral contraceptives, and pregnancy." JAMA, 236, p. 1382
  9. Lundgren S, Lonning PE, Aakvaag A, Kvinnsland S, Lnning PE (1990) "Influence of aminoglutethimide on the metabolism of medroxyprogesterone acetate and megestrol acetate in postmenopausal patients with advanced breast cancer." Cancer Chemother Pharmacol, 27, p. 101-5
  10. Halpenny O, Bye A, Cranny A, Feely J, Daly PA (1990) "Influence of aminoglutethimide on plasma levels of medroxyprogesterone acetate." Med Oncol Tumor Pharmacother, 7, p. 241-7
  11. Mumford JP (1974) "Letter: Drugs affecting oral contraceptives." Br Med J, 2, p. 333-4
  12. Back DJ, Bates M, Bowden A, et al. (1980) "The interaction of phenobarbital and other anticonvulsants with oral contraceptive steroid therapy." Contraception, 22, p. 495-503
  13. Dossetor J (1975) "Drug interactions with oral contraceptives." Br Med J, 4, p. 467-8
  14. Baciewicz AM, Self TH (1984) "Rifampin drug interactions." Arch Intern Med, 144, p. 1667-71
  15. Nocke-finck L (1973) "Effects of rifampicin on menstral cycle and on estrogen excretion in patients taking oral contraceptives." JAMA, 226, p. 378
  16. Bolt HM, Bolt M, Kappus H (1977) "Interaction of rifampicin treatment with pharmacokinetics and metabolism of ethinyloestradiol in man." Acta Endocrinol (Copenh), 85, p. 189-97
  17. Back DJ, Breckenridge AM, Crawford FE, et al. (1980) "The effect of rifampicin on the pharmacokinetics of ethynylestradiol in women." Contraception, 21, p. 135-43
  18. Furlan AJ, Rothner AD (1974) "Anti-epileptic drugs and failure of oral contraceptives." Lancet, 1, p. 1113
  19. Coulam CB, Annegers JF (1979) "Do anticonvulsants reduce the efficacy of oral contraceptives?" Epilepsia, 20, p. 519-26
  20. Szoka PR, Edgren RA (1988) "Drug interactions with oral contraceptives: compilation and analysis of an adverse experience report database." Fertil Steril, 49, s31-8
  21. Mattson RH, Cramer JA, Darney PD, Naftolin F (1986) "Use of oral contraceptives by women with epilepsy." JAMA, 256, p. 238-40
  22. van Dijke CP, Weber JC (1984) "Interaction between oral contraceptives and griseofulvin." Br Med J (Clin Res Ed), 288, p. 1125-6
  23. Laengner H, Detering K (1974) "Letter: Anti-epileptic drugs and failure of oral contraceptives." Lancet, 2, p. 600
  24. Janz D, Schmidt D (1974) "Letter: Anti-epileptic drugs and failure of oral contraceptives." Lancet, 1, p. 1113
  25. Curran MA (1986) "Drug interactions with the pill." Med J Aust, 144, p. 670-1
  26. Back DJ, Orme ML (1990) "Pharmacokinetic drug interactions with oral contraceptives." Clin Pharmacokinet, 18, p. 472-84
  27. D'Arcy PF (1986) "Drug interactions with oral contraceptives." Drug Intell Clin Pharm, 20, p. 353-62
  28. Notelovitz M, Tjapkes J, Ware M (1981) "Interaction between estrogen and dilantin in a menopausal woman." N Engl J Med, 304, p. 788-9
  29. (2001) "Product Information. Premarin (conjugated estrogens)." Wyeth-Ayerst Laboratories
  30. Strayhorn VA, Baciewicz AM, Self TH (1997) "Update on rifampin drug interactions, III." Arch Intern Med, 157, p. 2453-8
  31. Michalets EL (1998) "Update: clinically significant cytochrome P-450 drug interactions." Pharmacotherapy, 18, p. 84-112
  32. Back DJ, Breckenridge AM, Crawford FE, MacIver M, Orne ML, Rowe PH (1981) "Interindividual variation and drug interactions with hormonal steroid contraceptives." Drugs, 21, p. 46-61
  33. LeBel M, Masson E, Guilbert E, Colborn D, Paquet F, Allard S, Vallee F, Narang PK (1998) "Effects of rifabutin and rifampicin on the pharmacokinetics of ethinylestradiol and norethindrone." J Clin Pharmacol, 38, p. 1042-50
  34. Barditch-Crovo P, Trapnell CB, Ette E, et al. (1999) "The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive." Clin Pharmacol Ther, 65, p. 428-38
  35. Weisberg E (1999) "Interactions between oral contraceptives and antifungals antibacterials - Is contraceptive failure the result?." Clin Pharmacokinet, 36, p. 309-13
  36. Klosterskov Jensen P, Saano V, Haring P, Svenstrup B, Menge GP (1992) "Possible interaction between oxcarbazepine and an oral contraceptive." Epilepsia, 33, p. 1149-52
  37. Wilbur K, Ensom MHH (2000) "Pharmacokinetic drug interactions between oral contraceptives and second-generation anticonvulsants." Clin Pharmacokinet, 38, p. 355-65
  38. Durr D, Stieger B, KullakUblick GA, Rentsch KM, Steinert HC, Meier PJ, Fattinger K (2000) "St John's Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4." Clin Pharmacol Ther, 68, p. 598-604
  39. Weaver K, Glasier A (1999) "Interaction between broad-spectrum antibiotics and the combined oral contraceptive pill: a literature review." Contraception, 59, p. 71-8
  40. Zachariassen RD (1994) "Loss of oral contraceptive efficacy by concurrent antibiotic administration." Women Health, 22, p. 17-26
  41. Dickinson BD, Altman RD, Nielsen NH, Sterling ML (2001) "Drug interactions between oral contraceptives and antibiotics." Obstet Gynecol, 98(5 Pt 1), p. 853-60
  42. (2003) "Unwanted pregnancy on self-medication with St John's wort despite hormonal contraception." Br J Clin Pharmacol, 55, p. 112-113
  43. Pfrunder A, Schiesser M, Gerber S, Haschke M, Bitzer J, Drewe J (2003) "Interaction of St John's wort with low-dose oral contraceptive therapy: a randomized controlled trial." Br J Clin Pharmacol, 56, p. 683-90
  44. Hall SD, Wang Z, Huang SM, et al. (2003) "The interaction between St John's wort and an oral contraceptive." Clin Pharmacol Ther, 74, p. 525-35
  45. Gorski JC, Hamman MA, Wang Z, Vasvada N, Huang S, Hall SD (2002) "The effect of St. John's wort on the efficacy of oral contraception." Clin Pharmacol Ther, 71, P25
  46. Schwarz UI, Buschel B, Kirch W (2001) "Failure of oral contraceptives because of St. John's wort." Eur J Clin Pharmacol, 57, A25
  47. Faculty of Sexual & Reproductive Healthcare (2016) "FSRH Clinical Guidance: Drug Interactions with Hormonal Contraception. file:///C:/Users/df033684/Downloads/ceuguidancedruginteractionshormonal.pdf"

Drug and food interactions

Moderate

norethindrone food

Applies to: elagolix / estradiol / norethindrone

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References (32)
  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  4. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  22. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  23. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  25. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  32. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
Moderate

dicumarol food

Applies to: dicumarol

MONITOR: Vitamin K may antagonize the hypoprothrombinemic effect of oral anticoagulants. Vitamin K is a cofactor in the synthesis of blood clotting factors that are inhibited by oral anticoagulants, thus intake of vitamin K through supplements or diet can reverse the action of oral anticoagulants. Resistance to oral anticoagulants has been associated with consumption of foods or enteral feedings high in vitamin K content. Likewise, a reduction of vitamin K intake following stabilization of anticoagulant therapy may result in elevation of the INR and bleeding complications. Foods rich in vitamin K include beef liver, broccoli, Brussels sprouts, cabbage, collard greens, endive, kale, lettuce, mustard greens, parsley, soy beans, spinach, Swiss chard, turnip greens, watercress, and other green leafy vegetables. Moderate to high levels of vitamin K are also found in other foods such as asparagus, avocados, dill pickles, green peas, green tea, canola oil, margarine, mayonnaise, olive oil, and soybean oil. Snack foods containing the fat substitute, olestra, are fortified with 80 mcg of vitamin K per each one ounce serving so as to offset any depletion of vitamin K that may occur due to olestra interference with its absorption. Whether these foods can alter the effect of oral anticoagulants has not been extensively studied. One small study found that moderate consumption (1.5 servings/day) does not significantly affect the INR after one week in patients receiving long-term anticoagulation.

Consumption of large amounts of mango fruit has been associated with enhanced effects of warfarin. The exact mechanism of interaction is unknown but may be related to the vitamin A content, which may inhibit metabolism of warfarin. In one report, thirteen patients with an average INR increase of 38% reportedly had consumed one to six mangos daily 2 to 30 days prior to their appointment. The average INR decreased by 17.7% after discontinuation of mango ingestion for 2 weeks. Rechallenge in two patients appeared to confirm the interaction.

Limited data also suggest a potential interaction between warfarin and cranberry juice resulting in changes in the INR and/or bleeding complications. The mechanism is unknown but may involve alterations in warfarin metabolism induced by flavonoids contained in cranberry juice. At least a dozen reports of suspected interaction have been filed with the Committee on Safety of Medicines in the U.K. since 1999, including one fatality. In the fatal case, the patient's INR increased dramatically (greater than 50) six weeks after he started drinking cranberry juice, and he died from gastrointestinal and pericardial hemorrhage. However, the patient was also taking cephalexin for a chest infection and had not eaten for two weeks prior to hospitalization, which may have been contributing factors. Other cases involved less dramatic increases or instabilities in INR following cranberry juice consumption, and a decrease was reported in one, although details are generally lacking. In a rare published report, a 71-year-old patient developed hemoptysis, hematochezia, and shortness of breath two weeks after he started drinking 24 ounces of cranberry juice a day. Laboratory test results on admission revealed a decrease in hemoglobin, an INR greater than 18, and prothrombin time exceeding 120 seconds. The patient recovered after warfarin doses were withheld for several days and he was given packed red blood cells, fresh-frozen plasma, and subcutaneous vitamin K. It is not known if variations in the constituents of different brands of cranberry juice may affect the potential for drug interactions.

There have been several case reports in the medical literature of patients consuming grapefruit, grapefruit juice, or grapefruit seed extract who experienced increases in INR. R(+) warfarin, the less active of the two enantiomers of warfarin, is partially metabolized by CYP450 3A4. Depending on brand, concentration, dose and preparation, grapefruit juice may be considered a moderate to strong inhibitor of CYP450 3A4, thus coadministration with warfarin may decrease the clearance of R(+) warfarin. However, the clinical significance of this effect has not been established. A pharmacokinetic study found no effect on the PT or INR values of nine warfarin patients given 8 oz of grapefruit juice three times a day for one week.

A patient who was stabilized on warfarin developed a large hematoma in her calf in association with an elevated INR of 14 following consumption of approximately 3 liters of pomegranate juice in the week prior to admission. In vitro data suggest that pomegranate juice can inhibit CYP450 2C9, the isoenzyme responsible for the metabolic clearance of the biologically more active S(-) enantiomer of warfarin. In rats, pomegranate juice has also been shown to inhibit intestinal CYP450 3A4, the isoenzyme that contributes to the metabolism of R(+) warfarin.

Black currant juice and black currant seed oil may theoretically increase the risk of bleeding or bruising if used in combination with anticoagulants. The proposed mechanism is the antiplatelet effects of the gamma-linolenic acid constituent in black currants.

Soy protein in the form of soy milk was thought to be responsible for a case of possible warfarin antagonism in an elderly male stabilized on warfarin. The exact mechanism of interaction is unknown, as soy milk contains only trace amounts of vitamin K. Subtherapeutic INR values were observed approximately 4 weeks after the patient began consuming soy milk daily for the treatment of hypertriglyceridemia. No other changes in diet or medications were noted during this time. The patient's INR returned to normal following discontinuation of the soy milk with no other intervention.

An interaction with chewing tobacco was suspected in a case of warfarin therapy failure in a young male who was treated with up to 25 to 30 mg/day for 4.5 years. The inability to achieve adequate INR values led to eventual discontinuation of the chewing tobacco, which resulted in an INR increase from 1.1 to 2.3 in six days. The authors attributed the interaction to the relatively high vitamin K content in smokeless tobacco.

MANAGEMENT: Intake of vitamin K through supplements or diet should not vary significantly during oral anticoagulant therapy. The diet in general should remain consistent, as other foods containing little or no vitamin K such as mangos and soy milk have been reported to interact with warfarin. Some experts recommend that continuous enteral nutrition should be interrupted for one hour before and one hour after administration of the anticoagulant dose and that enteral formulas containing soy protein should be avoided. Patients should also consider avoiding or limiting the consumption of cranberry juice or other cranberry formulations (e.g., encapsulated dried cranberry powder), pomegranate juice, black currant juice, and black currant seed oil.

References (37)
  1. Andersen P, Godal HC (1975) "Predictable reduction in anticoagulant activity of warfarin by small amounts of vitamin K." Acta Med Scand, 198, p. 269-70
  2. Westfall LK (1981) "An unrecognized cause of warfarin resistance." Drug Intell Clin Pharm, 15, p. 131
  3. Lee M, Schwartz RN, Sharifi R (1981) "Warfarin resistance and vitamin K." Ann Intern Med, 94, p. 140-1
  4. Zallman JA, Lee DP, Jeffrey PL (1981) "Liquid nutrition as a cause of warfarin resistance." Am J Hosp Pharm, 38, p. 1174
  5. Griffith LD, Olvey SE, Triplett WC (1982) "Increasing prothrombin times in a warfarin-treated patient upon withdrawal of ensure plus." Crit Care Med, 10, p. 799-800
  6. Kempin SJ (1983) "Warfarin resistance caused by broccoli." N Engl J Med, 308, p. 1229-30
  7. Watson AJ, Pegg M, Green JR (1984) "Enteral feeds may antagonise warfarin." Br Med J, 288, p. 557
  8. Walker FB (1984) "Myocardial infarction after diet-induced warfarin resistance." Arch Intern Med, 144, p. 2089-90
  9. Howard PA, Hannaman KN (1985) "Warfarin resistance linked to enteral nutrition products." J Am Diet Assoc, 85, p. 713-5
  10. Karlson B, Leijd B, Hellstrom K (1986) "On the influence of vitamin K-rich vegetables and wine on the effectiveness of warfarin treatment." Acta Med Scand, 220, p. 347-50
  11. Pedersen FM, Hamberg O, Hess K, Ovesen L (1991) "The effect of dietary vitamin K on warfarin-induced anticoagulation." J Intern Med, 229, p. 517-20
  12. Parr MD, Record KE, Griffith GL, et al. (1982) "Effect of enteral nutrition on warfarin therapy." Clin Pharm, 1, p. 274-6
  13. Wells PS, Holbrook AM, Crowther NR, Hirsh J (1994) "Interactions of warfarin with drugs and food." Ann Intern Med, 121, p. 676-83
  14. O'Reilly RA, Rytand DA (1980) ""Resistance" to warfarin due to unrecognized vitamin K supplementation." N Engl J Med, 303, p. 160-1
  15. Kazmier FJ, Spittell JA Jr (1970) "Coumarin drug interactions." Mayo Clin Proc, 45, p. 249-55
  16. Chow WH, Chow TC, Tse TM, Tai YT, Lee WT (1990) "Anticoagulation instability with life-threatening complication after dietary modification." Postgrad Med J, 66, p. 855-7
  17. MacLeod SM, Sellers EM (1976) "Pharmacodynamic and pharmacokinetic drug interactions with coumarin anticoagulants." Drugs, 11, p. 461-70
  18. Sullivan DM, Ford MA, Boyden TW (1998) "Grapefruit juice and the response to warfarin." Am J Health Syst Pharm, 55, p. 1581-3
  19. Harrell CC, Kline SS (1999) "Vitamin K-supplemented snacks containing olestra: Implication for patients taking warfarin." Jama J Am Med Assn, 282, p. 1133-4
  20. Beckey NP, Korman LB, Parra D (1999) "Effect of the moderate consumption of olestra in patients receiving long-term warfarin therapy." Pharmacotherapy, 19, p. 1075-9
  21. Monterrey-Rodriguez J (2002) "Interaction between warfarin and mango fruit." Ann Pharmacother, 36, p. 940-1
  22. Cambria-Kiely JA (2002) "Effect of soy milk on warfarin efficacy." Ann Pharmacother, 36, p. 1893-6
  23. MHRA. Mediciines and Healthcare products Regulatory Agency. Committee on Safety of Medicines (2003) Possible interaction between warfarin and cranberry juice. http://medicines.mhra.gov.uk/ourwork/monitorsafequalmed/currentproblems/currentproblems.htm
  24. Suvarna R, Pirmohamed M, Henderson L (2003) "Possible interaction between warfarin and cranberry juice." BMJ, 327, p. 1454
  25. Kuykendall JR, Houle MD, Rhodes RS (2004) "Possible warfarin failure due to interaction with smokeless tobacco." Ann Pharmacother, 38, p. 595-7
  26. Grant P (2004) "Warfarin and cranberry juice: an interaction?" J Heart Valve Dis, 13, p. 25-6
  27. Rindone JP, Murphy TW (2006) "Warfarin-cranberry juice interaction resulting in profound hypoprothrombinemia and bleeding." Am J Ther, 13, p. 283-4
  28. Brandin H, Myrberg O, Rundlof T, Arvidsson AK, Brenning G (2007) "Adverse effects by artificial grapefruit seed extract products in patients on warfarin therapy." Eur J Clin Pharmacol, 63, p. 565-70
  29. Agencia Española de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de información online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  30. Griffiths AP, Beddall A, Pegler S (2008) "Fatal haemopericardium and gastrointestinal haemorrhage due to possible interaction of cranberry juice with warfarin." J R Soc Health, 128, p. 324-6
  31. Guo LQ, Yamazoe Y (2004) "Inhibition of cytochrome P450 by furanocoumarins in grapefruit juice and herbal medicines." Acta Pharmacol Sin, 25, p. 129-36
  32. Hamann GL, Campbell JD, George CM (2011) "Warfarin-cranberry juice interaction." Ann Pharmacother, 45, e17
  33. Jarvis S, Li C, Bogle RG (2010) "Possible interaction between pomegranate juice and warfarin." Emerg Med J, 27, p. 74-5
  34. Roberts D, Flanagan P (2011) "Case report: Cranberry juice and warfarin." Home Healthc Nurse, 29, p. 92-7
  35. Ge B, Zhang Z, Zuo Z (2014) "Updates on the clinical evidenced herb-warfarin interactions." Evid Based Complement Alternat Med, 2014, p. 957362
  36. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67
  37. Bodiford AB, Kessler FO, Fermo JD, Ragucci KR (2013) "Elevated international normalized ratio with the consumption of grapefruit and use of warfarin." SAGE Open Med Case Rep, p. 1-3
Minor

estradiol food

Applies to: elagolix / estradiol / norethindrone

Coadministration with grapefruit juice may increase the bioavailability of oral estrogens. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. In a small, randomized, crossover study, the administration of ethinyl estradiol with grapefruit juice (compared to herbal tea) increased peak plasma drug concentration (Cmax) by 37% and area under the concentration-time curve (AUC) by 28%. Based on these findings, grapefruit juice is unlikely to affect the overall safety profile of ethinyl estradiol. However, as with other drug interactions involving grapefruit juice, the pharmacokinetic alterations are subject to a high degree of interpatient variability. Also, the effect on other estrogens has not been studied.

References (2)
  1. Weber A, Jager R, Borner A, et al. (1996) "Can grapefruit juice influence ethinyl estradiol bioavailability?" Contraception, 53, p. 41-7
  2. Schubert W, Eriksson U, Edgar B, Cullberg G, Hedner T (1995) "Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17B-estradiol." Eur J Drug Metab Pharmacokinet, 20, p. 219-24
Minor

norethindrone food

Applies to: elagolix / estradiol / norethindrone

The central nervous system effects and blood levels of ethanol may be increased in patients taking oral contraceptives, although data are lacking and reports are contradictory. The mechanism may be due to enzyme inhibition. Consider counseling women about this interaction which is unpredictable.

References (1)
  1. Hobbes J, Boutagy J, Shenfield GM (1985) "Interactions between ethanol and oral contraceptive steroids." Clin Pharmacol Ther, 38, p. 371-80

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.