Skip to main content

Drug Interactions between dextromethorphan / quinidine and eliglustat

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

quiNIDine dextromethorphan

Applies to: dextromethorphan / quinidine and dextromethorphan / quinidine

GENERALLY AVOID: Coadministration with potent CYP450 2D6 inhibitors (e.g., quinidine, terbinafine) may significantly increase the plasma concentrations of dextromethorphan in patients who are extensive metabolizers of this isoenzyme (approximately 93% of Caucasians and more than 98% of Asians and individuals of African descent). The proposed mechanism is inhibition of the CYP450 2D6-mediated O-demethylation of dextromethorphan. Studies in humans have shown an increase in systemic exposure of dextromethorphan of up to 43-fold when given concurrently with quinidine. Increased plasma concentrations increase the risk of dextromethorphan-related adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome. However, this interaction has also been used clinically, with dextromethorphan in combination with quinidine indicated by some authorities for the treatment of pseudobulbar affect. Data evaluating the impact of this interaction in patients who are poor metabolizers of CYP450 2D6 are limited; most studies include extensive metabolizers of this isoenzyme. It is expected that poor metabolizers would have elevated dextromethorphan levels without concurrent quinidine

MANAGEMENT: The combination of dextromethorphan with potent CYP450 2D6 inhibitors should be generally avoided. Some manufacturers consider the concomitant use of dextromethorphan and selective serotonin reuptake inhibitors contraindicated. If use is considered necessary, the patient should be monitored for signs of dextromethorphan adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome, and advised to notify their health care professional if these adverse effects develop or worsen. Dose reduction of dextromethorphan may also be required.

References

  1. Zhang Y, Britto MR, Valderhaug KL, Wedlund PJ, Smith RA (1992) "Dextromethorphan: enhancing its systemic availability by way of low-dose quinidine-mediated inhibition of cytochrome P4502D6." Clin Pharmacol Ther, 51, p. 647-55
  2. Schadel M, Wu DA, Otton SV, Kalow W, Sellers EM (1995) "Pharmacokinetics of dextromethorphan and metabolites in humans: influence of the CYP2d6 phenotype and quinidine inhibition." J Clin Psychopharmacol, 15, p. 263-9
  3. Capon DA, Bochner F, Kerry N, Mikus G, Danz C, Somogyi AA (1996) "The influence of CYP2d6 polymorphism and quinidine on the disposition and antitussive effect of dextromethorphan in humans." Clin Pharmacol Ther, 60, p. 295-307
  4. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  5. Cerner Multum, Inc. "Australian Product Information."
  6. (2010) "Product Information. Nuedexta (dextromethorphan-quinidine)." Avanir Pharmaceuticals, Inc
View all 6 references

Switch to consumer interaction data

Major

quiNIDine eliglustat

Applies to: dextromethorphan / quinidine and eliglustat

CONTRAINDICATED: Coadministration with inhibitors of CYP450 2D6 may significantly increase the plasma concentrations of eliglustat, which is primarily metabolized by CYP450 2D6 and, to a lesser extent, CYP450 3A4. Eliglustat at substantially elevated plasma concentrations is predicted to cause prolongation of the PR, QTc and QRS cardiac intervals, which may increase the risk of bradycardia, atrioventricular block, cardiac arrest, and serious ventricular arrhythmias such as torsade de pointes. In 30 subjects who were CYP450 2D6 extensive metabolizers (EMs), eliglustat peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 7.0- and 8.0-fold, respectively, following coadministration of eliglustat (84 mg twice daily) with the potent CYP450 2D6 inhibitor paroxetine (30 mg once daily). Simulations using physiologically-based pharmacokinetic (PBPK) models suggest that paroxetine may increase eliglustat Cmax by 2.1-fold and AUC by 2.3-fold in CYP450 2D6 intermediate metabolizers (IMs). When the moderate CYP450 2D6 inhibitor terbinafine was used, PBPK modeling predicted a 3.8-fold increase in eliglustat Cmax and 4.5-fold increase in AUC for EMs, and a 1.6-fold increase each in Cmax and AUC for IMs. The magnitude of interaction is expected to increase further with the addition of a CYP450 3A4 inhibitor like ketoconazole. Simulations using PBPK models suggest that the combination of paroxetine (30 mg once daily) and ketoconazole (400 mg once daily) may increase eliglustat Cmax by 16.7-fold and AUC by 24.2-fold in EMs given eliglustat 84 mg twice daily. For IMs, the estimated increases in eliglustat Cmax and AUC are 7.5- and 9.8-fold, respectively. When a less potent combination of CYP450 2D6 (terbinafine) and 3A4 (fluconazole) inhibitors were used, PK modeling predicted a 10.2-fold increase in eliglustat Cmax and 13.6-fold increase in AUC for EMs given eliglustat 84 mg twice daily, and a 4.2-fold increase in eliglustat Cmax and 5.0-fold increase in AUC for IMs.

MANAGEMENT: The use of eliglustat in combination with one or more drugs that may result in moderate or potent inhibition of both CYP450 2D6 and 3A4 is considered contraindicated in CYP450 2D6 intermediate metabolizers (IMs) and extensive metabolizers (EMs). In the absence of a concomitant CYP450 3A4 inhibitor, eliglustat may be prescribed at a reduced dosage of 84 mg once daily to IMs and EMs treated with a potent or moderate CYP450 2D6 inhibitor. Poor metabolizers are not affected by CYP450 2D6 inhibition (since they already have minimal functional levels of the isoenzyme) and may also receive the reduced dosage of eliglustat, so long as they are not treated with a CYP450 3A4 inhibitor. Potent and moderate CYP450 3A4 inhibitors include azole antifungal agents, protease inhibitors, aprepitant, ciprofloxacin, clarithromycin, cobicistat, conivaptan, crizotinib, delavirdine, diltiazem, dronedarone, erythromycin, fusidic acid, idelalisib, imatinib, lomitapide, mibefradil, mifepristone, nefazodone, ranolazine, telithromycin, and verapamil. Potent and moderate CYP450 2D6 inhibitors include abiraterone, bupropion, celecoxib, cimetidine, cinacalcet, clobazam, darifenacin, diphenhydramine, duloxetine, fluoxetine, givosiran, methotrimeprazine, mirabegron, panobinostat, paroxetine, propoxyphene, quinidine, ranolazine, rolapitant, sertraline, stiripentol, and terbinafine. Some drugs such as abiraterone, cimetidine, ranolazine, and stiripentol are dual CYP450 2D6 and 3A4 inhibitors, and they should probably not be used with eliglustat in any patient regardless of their CYP450 2D6 metabolizer status. In addition, antiarrhythmics such as amiodarone, dronedarone, flecainide, propafenone, and quinidine can inhibit CYP450 2D6 and cause significant prolongation of the QT interval. These agents should not be used with eliglustat in any patient. Depending on the elimination half-life of concomitant drugs, a considerable waiting period may also be appropriate following their discontinuation before initiating eliglustat. For example, the prolonged duration of CYP450 2D6 inhibition by the moderate CYP450 2D6 inhibitor rolapitant of at least 28 days after its administration should also be taken into account when initiating eliglustat.

References

  1. (2014) "Product Information. Cerdelga (eliglustat)." Genzyme Corporation
  2. (2015) "Product Information. Varubi (rolapitant)." Tesaro Inc.

Switch to consumer interaction data

Moderate

dextromethorphan eliglustat

Applies to: dextromethorphan / quinidine and eliglustat

MONITOR: Coadministration with CYP450 2D6 inhibitors may increase the plasma concentrations of dextromethorphan in patients who are extensive metabolizers of this isoenzyme (approximately 93% of Caucasians and more than 98% of Asians and individuals of African descent). The proposed mechanism is inhibition of the CYP450 2D6-mediated O-demethylation of dextromethorphan. Increased plasma concentrations increase the risk of dextromethorphan-related adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome. Coadministration of dextromethorphan (60 mg orally, once) with the CYP450 2D6 inhibitor panobinostat (20 mg orally once a day on days 3, 5, and 8) in 14 patients with advanced cancer had a highly variable effect on dextromethorphan levels, increasing the peak plasma concentration (Cmax) of dextromethorphan by 20% to 200%, and total systemic exposure (AUC 0 to infinity) by 20% to 130%, compared to dextromethorphan given alone. In addition, multiple doses of the potent CYP450 2D6 inhibitor cinacalcet (50 mg daily), increased the AUC of a single 30 mg dextromethorphan dose by 11-fold in extensive metabolizers of this isoenzyme. The moderate CYP450 2D6 inhibitor asunaprevir, given at 200 mg twice daily, also increased Cmax and AUC of a single 30 mg dose of dextromethorphan by 2.7- and 3.9-fold, respectively, in 17 study subjects.

MANAGEMENT: Caution should be exercised if these drugs must be used together. Patients should be monitored for signs of dextromethorphan adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome, and advised to notify their health care professional if these adverse effects develop or worsen. Dose reduction of dextromethorphan may also be required.

References

  1. Funck-Brentano C, Jacqz-Aigrain E, Leenhardt A, Roux A, Poirier JM, Jaillon P (1991) "Influence of amiodarone on genetically determined drug metabolism in humans." Clin Pharmacol Ther, 50, p. 259-66
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."
  4. (2011) "Product Information. Zytiga (abiraterone)." Centocor Inc
  5. (2015) "Product Information. Farydak (panobinostat)." Novartis Pharmaceuticals
  6. (2021) "Product Information. Qelbree (viloxazine)." Supernus Pharmaceuticals Inc
View all 6 references

Switch to consumer interaction data

Drug and food interactions

Major

eliglustat food

Applies to: eliglustat

GENERALLY AVOID: Grapefruit juice may significantly increase the systemic exposure to eliglustat. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because eliglustat is predicted to cause prolongation of the PR, QTc, and QRS cardiac intervals at substantially elevated plasma concentrations, consumption of grapefruit juice during treatment may increase the risk of bradycardia, atrioventricular block, cardiac arrest, and serious ventricular arrhythmias such as torsade de pointes.

MANAGEMENT: Patients treated with eliglustat should avoid consumption of grapefruit and grapefruit juice.

References

  1. (2014) "Product Information. Cerdelga (eliglustat)." Genzyme Corporation

Switch to consumer interaction data

Moderate

quiNIDine food

Applies to: dextromethorphan / quinidine

GENERALLY AVOID: In a small, randomized, crossover study, the administration of quinidine with grapefruit juice (compared to water) to healthy volunteers significantly prolonged the time to reach peak plasma quinidine concentrations and decreased the plasma concentrations of its major metabolite, 3-hydroxyquinidine. These changes were associated pharmacodynamically with both a delay and a reduction in the maximal effect on QTc interval. The proposed mechanism is delay of gastric emptying as well as inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits.

MANAGEMENT: Given the drug's narrow therapeutic index, patients receiving quinidine therapy should avoid the consumption of grapefruits and grapefruit juice to prevent any undue fluctuations in plasma drug levels.

References

  1. Ace LN, Jaffe JM, Kunka RL (1983) "Effect of food and an antacid on quinidine bioavailability." Biopharm Drug Dispos, 4, p. 183-90
  2. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  3. Ha HR, Chen J, Leuenberger PM, Freiburghaus AU, Follah F (1995) "In vitro inhibition of midazolam and quinidine metabolism by flavonoids." Eur J Clin Pharmacol, 48, p. 367-71
  4. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
View all 4 references

Switch to consumer interaction data

Moderate

dextromethorphan food

Applies to: dextromethorphan / quinidine

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.