Skip to main content

Drug Interactions between dexamethasone / moxifloxacin and Robimycin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

erythromycin moxifloxacin

Applies to: Robimycin (erythromycin) and dexamethasone / moxifloxacin

GENERALLY AVOID: Certain quinolones, including gatifloxacin and moxifloxacin, may cause dose-related prolongation of the QT interval in some patients. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. During postmarketing surveillance, rare cases of torsade de pointes have been reported in patients taking gatifloxacin. These cases primarily involved patients with underlying medical conditions for which they were receiving concomitant medications known to prolong the QTc interval. Rare cases of tachycardia have been reported with moxifloxacin. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Coadministration of gatifloxacin or moxifloxacin with other drugs that can prolong the QT interval should generally be avoided. Caution and clinical monitoring are recommended if concomitant use is required. Since the magnitude of QTc prolongation increases with increasing plasma concentrations of the quinolone, recommended dosages and intravenous infusion rates should not be exceeded. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. "Product Information. Avelox (moxifloxacin)." Bayer PROD (2001):
  2. "Product Information. Tequin (gatifloxacin)." Bristol-Myers Squibb PROD (2001):
  3. Siepmann M, Kirch W "Drug points - Tachycardia associated with moxifloxacin." Br Med J 322 (2001): 23
  4. Owens RC "Risk assessment for antimicrobial agent-induced QTc interval prolongation and torsades de pointes." Pharmacotherapy 21 (2001): 301-19
  5. Iannini PB, Circiumaru I "Gatifloxacin-induced QTc prolongation and ventricular tachycardia." Pharmacotherapy 21 (2001): 361-2
  6. Demolis JL, Kubitza D, Tenneze L, Funck-Bretano C "Effect of a single oral dose of moxifloxacin (400 mg and 800 mg) on ventricular repolarization in healthy subjects." Clin Pharmacol Ther 68 (2000): 658-66
  7. Iannini PB, Doddamani S, Byazrova E, Curciumaru I, Kramer H "Risk of torsades de pointes with non-cardiac drugs." BMJ 322 (2001): 46-7
  8. Ball P "Quinolone-induced QT interval prolongation: a not-so-unexpected class effect." J Antimicrob Chemother 45 (2000): 557-9
  9. Kang J, Wang L, Chen XL, Triggle DJ, Rampe D "Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG." Mol Pharmacol 59 (2001): 122-6
  10. White CM, Grant EM, Quintiliani R "Moxifloxacin does increase the corrected QT interval." Clin Infect Dis 33 (2001): 1441-2
  11. Frothingham R "Rates of torsades de pointes associated with ciprofloxacin, ofloxacin, levofloxacin, gatifloxacin, and moxifloxacin." Pharmacotherapy 21 (2001): 1468-72
  12. Bertino JS Jr, Owens RC Jr, Carnes TD, Iannini PB "Gatifloxacin-associated corrected QT interval prolongation, torsades de pointes, and ventricular fibrillation in patients with known risk factors." Clin Infect Dis 34 (2002): 861-3
  13. Oliphant CM, Green GM "Quinolones: a comprehensive review." Am Fam Physician 65 (2002): 455-64
  14. Owens RC Jr, Ambrose PG "Torsades de pointes associated with fluoroquinolones." Pharmacotherapy 22 (2002): 663-8; discussion 668-72
  15. Noel GJ, Natarajan J, Chien S, Hunt TL, Goodman DB, Abels R "Effects of three fluoroquinolones on QT interval in healthy adults after single doses." Clin Pharmacol Ther 73 (2003): 292-303
  16. Ansari SR, Chopra N "Gatifloxacin and Prolonged QT Interval." Am J Med Sci 327 (2004): 55-6
  17. Iannini PB "Cardiotoxicity of macrolides, ketolides and fluoroquinolones that prolong the QTc interval." Expert Opin Drug Saf 1 (2002): 121-8
  18. Owens RC "QT Prolongation with Antimicrobial Agents : Understanding the Significance." Drugs 64 (2004): 1091-124
  19. Katritsis D, Camm AJ "Quinolones: cardioprotective or cardiotoxic." Pacing Clin Electrophysiol 26 (2003): 2317-20
  20. Stahlmann R "Clinical toxicological aspects of fluoroquinolones." Toxicol Lett 127 (2002): 269-77
  21. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  22. Canadian Pharmacists Association "e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink" (2006):
  23. Dale KM, Lertsburapa K, Kluger J, White CM "Moxifloxacin and torsade de pointes." Ann Pharmacother 41 (2007): 336-40
  24. Falagas ME, Rafailidis PI, Rosmarakis ES "Arrhythmias associated with fluoroquinolone therapy." Int J Antimicrob Agents 29 (2007): 374-9
  25. Tsikouris JP, Peeters MJ, Cox CD, Meyerrose GE, Seifert CF "Effects of three fluoroquinolones on QT analysis after standard treatment courses." Ann Noninvasive Electrocardiol 11 (2006): 52-6
  26. Cerner Multum, Inc. "Australian Product Information." O 0
View all 26 references

Switch to consumer interaction data

Major

dexAMETHasone moxifloxacin

Applies to: dexamethasone / moxifloxacin and dexamethasone / moxifloxacin

MONITOR CLOSELY: Concomitant administration of corticosteroids may potentiate the risk of tendinitis and tendon rupture associated with fluoroquinolone treatment. The mechanism is unknown. Tendinitis and tendon rupture have most frequently involved the Achilles tendon, although cases involving the rotator cuff (the shoulder), the hand, the biceps, and the thumb have also been reported. Some have required surgical repair or resulted in prolonged disability. Tendon rupture can occur during or up to several months after completion of fluoroquinolone therapy.

MANAGEMENT: Caution is recommended if fluoroquinolones are prescribed in combination with corticosteroids, particularly in patients with other concomitant risk factors (e.g., age over 60 years; recipient of kidney, heart, and/or lung transplant). Patients should be advised to stop taking the fluoroquinolone, avoid exercise and use of the affected area, and promptly contact their physician if they experience pain, swelling, or inflammation of a tendon. In general, fluoroquinolones should only be used to treat conditions that are proven or strongly suspected to be caused by bacteria and only if the benefits outweigh the risks.

References

  1. "Product Information. Cipro (ciprofloxacin)." Bayer PROD (2002):
  2. "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical PROD (2001):
  3. "Product Information. Avelox (moxifloxacin)." Bayer PROD (2001):
  4. Khaliq Y, Zhanel GG "Fluoroquinolone-Associated Tendinopathy: A Critical Review of the Literature." Clin Infect Dis 36 (2003): 1404-1410
  5. van der Linden PD, Sturkenboom MC, Herings RM, Leufkens HM, Rowlands S, Stricker BH "Increased risk of achilles tendon rupture with quinolone antibacterial use, especially in elderly patients taking oral corticosteroids." Arch Intern Med 163 (2003): 1801-7
  6. FDA. U.S. Food and Drug Administration "Information for Healthcare Professionals. Fluoroquinolone Antimicrobial Drugs. FDA Alert [7/8/2008]. http://www.fda.gov/cder/drug/InfoSheets/HCP/fluoroquinolonesHCP.htm" (2008):
  7. "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc. (2017):
View all 7 references

Switch to consumer interaction data

Moderate

erythromycin dexAMETHasone

Applies to: Robimycin (erythromycin) and dexamethasone / moxifloxacin

MONITOR: Coadministration with inhibitors of CYP450 3A4 may increase the plasma concentrations and pharmacologic effects of corticosteroids, which are primarily metabolized by the isoenzyme. The interaction has been reported with potent inhibitors such as clarithromycin, erythromycin, itraconazole, nefazodone, cobicistat, and ritonavir during concomitant use of various corticosteroids, including inhaled, nasal, and ophthalmic formulations. Systemic corticosteroid adverse effects may occur following intensive or long-term continuous ophthalmic corticosteroid therapy. Cushing's syndrome and adrenal insufficiency have been attributed to the interaction.

MANAGEMENT: The possibility of increased corticosteroid effects should be considered during coadministration with potent and moderate CYP450 3A4 inhibitors. Some authorities advise against concomitant use unless the potential benefit outweighs the risk. If the combination is considered necessary, a lower dosage of the corticosteroid may be required. When indicated for intranasal or inhalational use, alternative corticosteroids such as beclomethasone, which is less dependent on CYP450 3A4 metabolism, should be considered, particularly if long term treatment is required. Patients should be monitored for signs and symptoms of hypercorticism such as acne, striae, thinning of the skin, easy bruising, moon facies, dorsocervical "buffalo" hump, truncal obesity, increased appetite, acute weight gain, edema, hypertension, hirsutism, hyperhidrosis, proximal muscle wasting and weakness, glucose intolerance, exacerbation of preexisting diabetes, depression, and menstrual disorders. Other systemic glucocorticoid effects may include adrenal suppression, immunosuppression, posterior subcapsular cataracts, glaucoma, bone loss, and growth retardation in children and adolescents. Following extensive use with a potent CYP450 3A4 inhibitor, a progressive dosage reduction may be required over a longer period if the corticosteroid is to be withdrawn from therapy, as there may be a significant risk of adrenal suppression. Signs and symptoms of adrenal insufficiency include anorexia, hypoglycemia, nausea, vomiting, weight loss, muscle wasting, fatigue, weakness, dizziness, postural hypotension, depression, and adrenal crisis manifested as inability to respond to stress (e.g., illness, infection, surgery, trauma).

References

  1. Zurcher RM, Frey BM, Frey FJ "Impact of ketoconazole on the metabolism of prednisolone." Clin Pharmacol Ther 45 (1989): 366-72
  2. Yamashita SK, Ludwig EA, Middleton E Jr, Jusko WJ "Lack of pharmacokinetic and pharmacodynamic interactions between ketoconazole and prednisolone." Clin Pharmacol Ther 49 (1991): 558-70
  3. Ulrich B, Frey FJ, Speck RF, Frey BM "Pharmacokinetics/pharmacodynamics of ketoconazole-prednisolone interaction." J Pharmacol Exp Ther 260 (1992): 487-90
  4. Kandrotas RJ, Slaughter RL, Brass C, Jusko WJ "Ketoconazole effects on methylprednisolone disposition and their joint suppression of endogenous cortisol." Clin Pharmacol Ther 42 (1987): 465-70
  5. Glynn AM, Slaughter RL, Brass C, et al. "Effects of ketoconazole on methylprednisolone pharmacokinetics and cortisol secretion." Clin Pharmacol Ther 39 (1986): 654-9
  6. Itkin IH, Menzel ML "The use of macrolide antibiotic substances in the treatment of asthma." J Allergy Clin Immunol 45 (1970): 146-62
  7. LaForce CF, Szefler SJ, Miller MF, Ebling W, Brenner M "Inhibition of methylprednisolone elimination in the presence of erythromycin therapy." J Allergy Clin Immunol 72 (1983): 34-9
  8. Finkenbine RD, Frye MD "Case of psychosis due to prednisone-clarithromycin interaction." Gen Hosp Psychiat 20 (1998): 325-6
  9. Varis T, Kaukonen KM, Kivisto KT, Neuvonen PJ "Plasma concentrations and effects of oral methylprednisolone are considerably increased by itraconazole." Clin Pharmacol Ther 64 (1998): 363-8
  10. Hillebrand-Haverkort ME, Prummel MF, ten Veen JH "Ritonavir-induced Cushing's syndrome in a patient treated with nasal fluticasone." AIDS 13 (1999): 1803
  11. Varis T, Kivisto KT, Neuvonen PJ "The effect of itraconazole on the pharmacokinetics and pharmacodynamics of oral prednisolone." Eur J Clin Pharmacol 56 (2000): 57-60
  12. Varis T, Backman JT, Kivisto KT, Neuvonen PJ "Diltiazem and mibefradil increase the plasma concentrations and greatly enhance the adrenal-suppressant effect of oral methylprednisolone." Clin Pharmacol Ther 67 (2000): 215-21
  13. Garey KW, Rubinstein I, Gotfried MH, Khan IJ, Varma S, Danziger LH "Long-term clarithromycin decreases prednisone requirements in elderly patients with prednisone-dependent asthma." Chest 118 (2000): 1826-7
  14. Lebrun-Vignes B, Archer VC, Diquest B, et al. "Effect of itraconazole on the pharmacokinetics of prednisolone and methylprednisolone and cortisol secretion in healthy subjects." Br J Clin Pharmacol 51 (2001): 443-50
  15. Couturier J, Steele M, Hussey L, Pawliuk G "Steroid-induced mania in an adolescent: risk factors and management." Can J Clin Pharmacol 8 (2001): 109-12
  16. Gupta SK, Dube MP "Exogenous Cushing syndrome mimicking human immunodeficiency virus lipodystrophy." Clin Infect Dis 35 (2002): E69-71
  17. Raaska K, Niemi M, Neuvonen M, Neuvonen PJ, Kivisto KT "Plasma concentrations of inhaled budesonide and its effects on plasma cortisol are increased by the cytochrome P4503A4 inhibitor itraconazole." Clin Pharmacol Ther 72 (2002): 362-369
  18. Main KM, Skov M, Sillesen IB, et al. "Cushing's syndrome due to pharmacological interaction in a cystic fibrosis patient." Acta Paediatr 91 (2002): 1008-11
  19. Skov M, Main KM, Sillesen IB, Muller J, Koch C, Lanng S "Iatrogenic adrenal insufficiency as a side-effect of combined treatment of itraconazole and budesonide." Eur Respir J 20 (2002): 127-33
  20. Kotlyar M, Brewer ER, Golding M, Carson SW "Nefazodone inhibits methylprednisolone disposition and enhances its adrenal-suppressant effect." J Clin Psychopharmacol 23 (2003): 652-6
  21. Bolland MJ, Bagg W, Thomas MG, Lucas JA, Ticehurst R, Black PN "Cushing's syndrome due to interaction between inhaled corticosteroids and itraconazole." Ann Pharmacother 38 (2004): 46-9
  22. Edsbacker S, Andersson T "Pharmacokinetics of budesonide (Entocort EC) capsules for Crohn's disease." Clin Pharmacokinet 43 (2004): 803-21
  23. Samaras K, Pett S, Gowers A, McMurchie M, Cooper DA "Iatrogenic Cushing's syndrome with osteoporosis and secondary adrenal failure in HIV-infected patients receiving inhaled corticosteroids and ritonavir-boosted protease inhibitors: six cases." J Clin Endocrinol Metab 90 (2005): 4394-8
  24. Soldatos G, Sztal-Mazer S, Woolley I, Stockigt J "Exogenous glucocorticoid excess as a result of ritonavir-fluticasone interaction." Intern Med J 35 (2005): 67-8
  25. Penzak SR, Formentini E, Alfaro RM, Long M, Natarajan V, Kovacs J "Prednisolone pharmacokinetics in the presence and absence of ritonavir after oral prednisone administration to healthy volunteers." J Acquir Immune Defic Syndr 40 (2005): 573-80
  26. EMEA. European Medicines Agency "EPARs. European Union Public Assessment Reports. http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landingpage.jsp&mid" (2007):
  27. Bhumbra NA, Sahloff EG, Oehrtman SJ, Horner JM "Exogenous Cushing syndrome with inhaled fluticasone in a child receiving lopinavir/ritonavir." Ann Pharmacother 41 (2007): 1306-9
  28. Busse KH, Formentini E, Alfaro RM, Kovacs JA, Penzak SR "Influence of antiretroviral drugs on the pharmacokinetics of prednisolone in HIV-infected individuals." J Acquir Immune Defic Syndr 48 (2008): 561-6
  29. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare "Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html" (2008):
View all 29 references

Switch to consumer interaction data

Drug and food interactions

Moderate

erythromycin food

Applies to: Robimycin (erythromycin)

ADJUST DOSING INTERVAL: Food may variably affect the bioavailability of different oral formulations and salt forms of erythromycin. The individual product package labeling should be consulted regarding the appropriate time of administration in relation to food ingestion. Grapefruit juice may increase the plasma concentrations of orally administered erythromycin. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In an open-label, crossover study consisting of six healthy subjects, the coadministration with double-strength grapefruit juice increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of a single dose of erythromycin (400 mg) by 52% and 49%, respectively, compared to water. The half-life was not affected. The clinical significance of this potential interaction is unknown.

MANAGEMENT: In general, optimal serum levels are achieved when erythromycin is taken in the fasting state, one-half to two hours before meals. However, some erythromycin products may be taken without regard to meals.

References

  1. Welling PG, Huang H, Hewitt PF, Lyons LL "Bioavailability of erythromycin stearate: influence of food and fluid volume." J Pharm Sci 67 (1978): 764-6
  2. Welling PG, Elliott RL, Pitterle ME, et al. "Plasma levels following single and repeated doses of erythromycin estolate and erythromycin stearate." J Pharm Sci 68 (1979): 150-5
  3. Welling PG "Influence of food and diet on gastrointestinal drug absorption: a review." J Pharmacokinet Biopharm 5 (1977): 291-334
  4. Coyne TC, Shum S, Chun AH, Jeansonne L, Shirkey HC "Bioavailability of erythromycin ethylsuccinate in pediatric patients." J Clin Pharmacol 18 (1978): 194-202
  5. Malmborg AS "Effect of food on absorption of erythromycin. A study of two derivatives, the stearate and the base." J Antimicrob Chemother 5 (1979): 591-9
  6. Randinitis EJ, Sedman AJ, Welling PG, Kinkel AW "Effect of a high-fat meal on the bioavailability of a polymer-coated erythromycin particle tablet formulation." J Clin Pharmacol 29 (1989): 79-84
  7. Kanazawa S, Ohkubo T, Sugawara K "The effects of grapefruit juice on the pharmacokinetics of erythromycin." Eur J Clin Pharmacol 56 (2001): 799-803
View all 7 references

Switch to consumer interaction data

Minor

erythromycin food

Applies to: Robimycin (erythromycin)

Ethanol, when combined with erythromycin, may delay absorption and therefore the clinical effects of the antibiotic. The mechanism appears to be due to slowed gastric emptying by ethanol. Data is available only for erythromycin ethylsuccinate. Patients should be advised to avoid ethanol while taking erythromycin salts.

References

  1. Morasso MI, Chavez J, Gai MN, Arancibia A "Influence of alcohol consumption on erythromycin ethylsuccinate kinetics." Int J Clin Pharmacol 28 (1990): 426-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.