Drug Interactions between dexamethasone / ketorolac / moxifloxacin and verapamil
This report displays the potential drug interactions for the following 2 drugs:
- dexamethasone/ketorolac/moxifloxacin
- verapamil
Interactions between your drugs
dexAMETHasone moxifloxacin
Applies to: dexamethasone / ketorolac / moxifloxacin and dexamethasone / ketorolac / moxifloxacin
MONITOR CLOSELY: Concomitant administration of corticosteroids may potentiate the risk of tendinitis and tendon rupture associated with fluoroquinolone treatment. The mechanism is unknown. Tendinitis and tendon rupture have most frequently involved the Achilles tendon, although cases involving the rotator cuff (the shoulder), the hand, the biceps, and the thumb have also been reported. Some have required surgical repair or resulted in prolonged disability. Tendon rupture can occur during or up to several months after completion of fluoroquinolone therapy.
MANAGEMENT: Caution is recommended if fluoroquinolones are prescribed in combination with corticosteroids, particularly in patients with other concomitant risk factors (e.g., age over 60 years; recipient of kidney, heart, and/or lung transplant). Patients should be advised to stop taking the fluoroquinolone, avoid exercise and use of the affected area, and promptly contact their physician if they experience pain, swelling, or inflammation of a tendon. In general, fluoroquinolones should only be used to treat conditions that are proven or strongly suspected to be caused by bacteria and only if the benefits outweigh the risks.
References (7)
- (2002) "Product Information. Cipro (ciprofloxacin)." Bayer
- (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
- (2001) "Product Information. Avelox (moxifloxacin)." Bayer
- Khaliq Y, Zhanel GG (2003) "Fluoroquinolone-Associated Tendinopathy: A Critical Review of the Literature." Clin Infect Dis, 36, p. 1404-1410
- van der Linden PD, Sturkenboom MC, Herings RM, Leufkens HM, Rowlands S, Stricker BH (2003) "Increased risk of achilles tendon rupture with quinolone antibacterial use, especially in elderly patients taking oral corticosteroids." Arch Intern Med, 163, p. 1801-7
- FDA. U.S. Food and Drug Administration (2008) Information for Healthcare Professionals. Fluoroquinolone Antimicrobial Drugs. FDA Alert [7/8/2008]. http://www.fda.gov/cder/drug/InfoSheets/HCP/fluoroquinolonesHCP.htm
- (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
verapamil dexAMETHasone
Applies to: verapamil and dexamethasone / ketorolac / moxifloxacin
MONITOR: Corticosteroids may antagonize the effects of antihypertensive medications by inducing sodium and fluid retention. These effects may be more common with the natural corticosteroids (cortisone, hydrocortisone) because they have greater mineralocorticoid activity. Conversely, some calcium channel blockers such as diltiazem and verapamil may increase corticosteroid plasma levels and effects by inhibiting their clearance via CYP450 3A4 metabolism.
MANAGEMENT: Patients on prolonged (i.e., longer than about a week) or high-dose corticosteroid therapy should have blood pressure, electrolyte levels, and body weight monitored regularly, and be observed for the development of edema and congestive heart failure. The dosages of antihypertensive medications may require adjustment.
References (1)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
verapamil ketorolac
Applies to: verapamil and dexamethasone / ketorolac / moxifloxacin
MONITOR: Limited data indicate that some cyclooxygenase inhibitors may attenuate the antihypertensive effects of some calcium channel blockers. The mechanism appears to be related to an alteration of vascular tone, which is dependent on prostacyclins and other vasodilatory prostanoids. When a nonsteroidal anti-inflammatory drug (NSAID) is added to the regimen of a patient who is already taking a calcium channel blocker, increased blood pressure may result. Also, the clinician should be aware that the risk of hypotension is increased when NSAIDs are withdrawn from the regimen.
MANAGEMENT: Monitoring for altered blood pressure control is recommended.
References (9)
- Ring ME, Corrigan JJ, Fenster PE (1986) "Effects of oral diltiazem on platelet function: alone and in combination with "low dose" aspirin." Thromb Res, 44, p. 391-400
- Altman R, Scazziota A, Dujovne C (1988) "Diltiazem potentiates the inhibitory effect of aspirin on platelet aggregation." Clin Pharmacol Ther, 44, p. 320-5
- Cremer KF, Pieper JA, Joyal M, Mehta J (1984) "Effects of diltiazem, dipyridamole, and their combination on hemostasis." Clin Pharmacol Ther, 36, p. 641-4
- Minuz P, Pancera P, Ribul M, et al. (1995) "Amlodipine and haemodynamic effects of cyclo-oxygenase inhibition." Br J Clin Pharmacol, 39, p. 45-50
- Houston MC, Weir M, Gray J, et al. (1995) "The effects of nonsteroidal anti-inflammatory drugs on blood pressures of patients with hypertension controlled by verapamil." Arch Intern Med, 155, p. 1049-54
- Deleeuw PW (1996) "Nonsteroidal anti-inflammatory drugs and hypertension: the risks in perspective." Drugs, 51, p. 179-87
- "Product Information. DurAct (bromfenac)." Wyeth-Ayerst Laboratories
- (2001) "Product Information. Arthrotec (diclofenac-misoprostol)." Searle
- Zanchetti A, Hansson L, Leonetti G, et al. (2002) "Low-dose aspirin does not interfere with the blood pressure-lowering effects of antihypertensive therapy." J Hypertens, 20, p. 1015-1022
dexAMETHasone ketorolac
Applies to: dexamethasone / ketorolac / moxifloxacin and dexamethasone / ketorolac / moxifloxacin
MONITOR: The combined use of corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the potential for serious gastrointestinal (GI) toxicity, including inflammation, bleeding, ulceration, and perforation. In a large, case-control study of elderly patients, those who used corticosteroids and NSAIDs concurrently had an estimated relative risk (RR) for peptic ulcer disease and GI hemorrhage of 14.6 compared to those who used neither. Corticosteroid use was associated with a doubling of the risk (estimated RR = 2.0), but the risk was confined to those who also used NSAIDs. It is possible that both categories of agents are ulcerogenic and have additive effects on the GI mucosa during coadministration. Some investigators have also suggested that the primary effect of corticosteroids in this interaction is to delay healing of erosions caused by NSAIDs rather than cause de novo ulcerations.
MANAGEMENT: Caution is advised if corticosteroids and NSAIDs are used together, especially in patients with a prior history of peptic ulcer disease or GI bleeding and in elderly and debilitated patients. During concomitant therapy, patients should be advised to take the medications with food and to immediately report signs and symptoms of GI ulceration and bleeding such as severe abdominal pain, dizziness, lightheadedness, and the appearance of black, tarry stools. The selective use of prophylactic anti-ulcer therapy (e.g., antacids, H2-antagonists) may be considered.
References (11)
- Stewart JT, Pennington CR, Pringle R (1985) "Anti-inflammatory drugs and bowel perforations and haemorrhage." Br Med J, 290, p. 787-8
- Thomas TP (1984) "The complications of systemic corticosteroid therapy in the elderly." Gerontology, 30, p. 60-5
- Messer J, Reitman D, Sacks HS, et al. (1983) "Association of adrenocorticosteroid therapy and peptic-ulcer disease." N Engl J Med, 309, p. 21-4
- ReMine SG, McIlrath DC (1980) "Bowel perforation in steroid-treated patients." Ann Surg, 192, p. 581-6
- Levy M, Miller DR, Kaufman DW, Siskind V, Schwingl P, Rosenberg L, Strom B, Shapiro S (1988) "Major upper gastrointestinal tract bleeding. Relation to the use of aspirin and other nonnarcotic analgesics." Arch Intern Med, 148, p. 281-5
- Kaufman DW, Kelly JP, Sheehan JE, Laszlo A, Wiholm BE, Alfredsson L, Koff RS, Shapiro S (1993) "Nonsteroidal anti-inflammatory drug use in relation to major upper gastrointestinal bleeding." Clin Pharmacol Ther, 53, p. 485-94
- Wilcox CM, Shalek KA, Cotsonis G (1994) "Striking prevalence of over-the-counter nonsteroidal anti- inflammatory drug use in patients with upper gastrointestinal hemorrhage." Arch Intern Med, 154, p. 42-6
- Cantu TG, Lipani JA (1995) "Gastrointestinal ulceration with NSAIDs." Am J Med, 99, p. 440-1
- Sacanella E, Munoz F, Cardellach F, Estruch R, Miro O, Urbanomarquez A (1996) "Massive haemorrhage due to colitis secondary to nonsteroidal anti-inflammatory drugs." Postgrad Med J, 72, p. 57-8
- Buchman AL, Schwartz MR (1996) "Colonic ulceration associated with the systemic use of nonsteroidal antiinflammatory medication." J Clin Gastroenterol, 22, p. 224-6
- Piper JM, Ray WA, Daugherty JR, Griffin MR (1991) "Corticosteroid use and peptic ulcer disease: role of nonsteroidal ani-inflammatory drugs." Ann Intern Med, 114, p. 735-40
ketorolac moxifloxacin
Applies to: dexamethasone / ketorolac / moxifloxacin and dexamethasone / ketorolac / moxifloxacin
MONITOR: Coadministration with nonsteroidal anti-inflammatory drugs (NSAIDs) may potentiate the risk of central nervous system toxicity sometimes associated with fluoroquinolone use. The interaction has been reported most often with enoxacin. It may occur with other fluoroquinolones as well, but is poorly documented. The exact mechanism of interaction is unknown. Some investigators suggest that the piperazine ring of fluoroquinolones may inhibit the binding of gamma-aminobutyric acid (GABA) to brain receptors and that NSAIDs may synergistically add to this effect. Patients with a history of seizures may be at greater risk.
MANAGEMENT: Clinical monitoring for signs of CNS stimulation such as tremors, involuntary muscle movements, hallucinations, or seizures is recommended if fluoroquinolone antibiotics are prescribed in combination with NSAIDs.
References (14)
- Ball P (1986) "Ciprofloxacin: an overview of adverse experiences." J Antimicrob Chemother, 18, p. 187-93
- Hooper DC, Wolfson JS (1985) "The fluoroquinolones: pharmacology, clinical uses, and toxicities in humans." Antimicrob Agents Chemother, 28, p. 716-21
- (2002) "Product Information. Cipro (ciprofloxacin)." Bayer
- (2002) "Product Information. Penetrex (enoxacin)." Rhone Poulenc Rorer
- (2001) "Product Information. Floxin (ofloxacin)." Ortho McNeil Pharmaceutical
- Domagala JM (1994) "Structure-activity and structure-side-effect relationships for the quinolone antibacterials." J Antimicrob Chemother, 33, p. 685-706
- (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
- (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
- Davey PG (1988) "Overview of drug interactions with the quinolones." J Antimicrob Chemother, 22(suppl c), p. 97-107
- Ball P, Tillotson G (1996) "Tolerability of fluoroquinolone antibiotics: past, present and future." Drug Saf, 13, p. 343-8
- (2001) "Product Information. Avelox (moxifloxacin)." Bayer
- (2001) "Product Information. Tequin (gatifloxacin)." Bristol-Myers Squibb
- (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
- Segev S. Rehavi M, Rubinstein E (1988) "Quinolones, theophylline, and diclofenac interactions with the gamma-aminobutyric acid receptor." Antimicrob Agents Chemother, 32, p. 1624-6
Drug and food interactions
verapamil food
Applies to: verapamil
GENERALLY AVOID: Consumption of large quantities of grapefruit juice may be associated with significantly increased plasma concentrations of oral verapamil. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. One study reported no significant effect of a single administration of grapefruit juice on the pharmacokinetics of verapamil in ten hypertensive patients receiving chronic therapy. In another study conducted in nine healthy male volunteers, administration of 120 mg oral verapamil twice daily for 3 days following pretreatment with 200 mL grapefruit juice twice daily for 5 days resulted in a 57% increase in S-verapamil peak plasma concentration (Cmax), a 36% increase in S-verapamil systemic exposure (AUC), a 40% increase in R-verapamil Cmax, and a 28% increase in R-verapamil AUC compared to administration following orange juice. Elimination half-life and renal clearance of both S- and R-verapamil were not affected by grapefruit juice, and there were no significant effects on blood pressure, heart rate, or PR interval. A third study reported a 1.63-fold increase in Cmax and a 1.45-fold increase in AUC of (R,S)-verapamil in 24 young, healthy volunteers given verapamil sustained-release 120 mg twice daily for 7 days with 250 mL grapefruit juice four times daily on days 5 through 7. Two subjects developed PR interval prolongation of more than 350 ms during grapefruit juice coadministration. A high degree of interindividual variability has been observed in these studies. The interaction was also suspected in a case report of a 42-year-old woman who developed complete heart block, hypotension, hypoxic respiratory failure, severe anion gap metabolic acidosis, and hyperglycemia following accidental ingestion of three verapamil sustained-release 120 mg tablets over a span of six hours. The patient's past medical history was remarkable only for migraine headaches, for which she was receiving several medications including verapamil. Prior to admission, the patient had a 2-week history of poorly controlled migraine, and the six hours preceding hospitalization she suffered from worsening headache and palpitations progressing to altered sensorium. An extensive workup revealed elevated verapamil and norverapamil levels more than 4.5 times above the upper therapeutic limits. These levels also far exceeded those reported in the medical literature for patients taking verapamil 120 mg every 6 hours, or 480 mg in a 24-hour period. The patient recovered after receiving ventilator and vasopressor support. Upon questioning, it was discovered that the patient had been drinking large amounts of grapefruit juice (3 to 4 liters total) the week preceding her admission due to nausea. No other sources or contributing factors could be found for the verapamil toxicity.
MANAGEMENT: Patients treated with oral verapamil should avoid the consumption of large amounts of grapefruit or grapefruit juice to prevent any undue fluctuations in serum drug levels. Patients should be advised to seek medical attention if they experience edema or swelling of the lower extremities; sudden, unexplained weight gain; difficulty breathing; chest pain or tightness; or hypotension as indicated by dizziness, fainting, or orthostasis.
References (9)
- McAllister RG, Jr (1982) "Clinical pharmacology of slow channel blocking agents." Prog Cardiovasc Dis, 25, p. 83-102
- (2001) "Product Information. Covera-HS (verapamil)." Searle
- Zaidenstein R, Dishi V, Gips M, Soback S, Cohen N, Weissgarten J, Blatt A, Golik A (1998) "The effect of grapefruit juice on the pharmacokinetics of orally administered verapamil." Eur J Clin Pharmacol, 54, p. 337-40
- Ho PC, Ghose K, Saville D, Wanwimolruk S (2000) "Effect of grapefruit juice on pharmacokinetics and pharmacodynamics of verapamil enantiomers in healthy volunteers." Eur J Clin Pharmacol, 56, p. 693-8
- Fuhr U, Muller-Peltzer H, Kern R, et al. (2002) "Effects of grapefruit juice and smoking on verapamil concentrations in steady state." Eur J Clin Pharmacol, 58, p. 45-53
- Bailey DG, Dresser GK (2004) "Natural products and adverse drug interactions." Can Med Assoc J, 170, p. 1531-2
- Bailey DG, Malcolm J, Arnold O, Spence JD (2004) "Grapefruit juice-drug interactions. 1998." Br J Clin Pharmacol, 58, S831-40; discussion S841-3
- Arayne MS, Sultana N, Bibi Z (2005) "Review: grape fruit juice - drug interactions." Pak J Pharm Sci, 18, p. 45-57
- Pillai U, Muzaffar J, Sandeep S, Yancey A (2009) "Grapefruit juice and verapamil: a toxic cocktail." South Med J, 102, p. 308-9
verapamil food
Applies to: verapamil
GENERALLY AVOID: Verapamil may increase the blood concentrations and intoxicating effects of ethanol. The exact mechanism of interaction is unknown but may involve verapamil inhibition of ethanol metabolism. In 10 healthy, young volunteers, verapamil (80 mg orally every 8 hours for 6 days) increased the mean peak blood concentration (Cmax) and the 12-hour area under the concentration-time curve (AUC) of ethanol (0.8 g/kg single oral dose) by 17% and 30%, respectively, compared to placebo. Verapamil AUCs were positively correlated to increased ethanol blood AUC values. Subjectively (i.e. each subject's perception of intoxication as measured on a visual analog scale), verapamil also significantly increased the area under the ethanol effect versus time curve but did not change the peak effect or time to peak effect.
MANAGEMENT: Patients treated with verapamil should be counseled to avoid alcohol consumption.
References (2)
- Bauer LA, Schumock G, Horn J, Opheim K (1992) "Verapamil inhibits ethanol elimination and prolongs the perception of intoxication." Clin Pharmacol Ther, 52, p. 6-10
- (2001) "Product Information. Isoptin (verapamil)." Knoll Pharmaceutical Company
ketorolac food
Applies to: dexamethasone / ketorolac / moxifloxacin
GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.
MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.
References (1)
- (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn
verapamil food
Applies to: verapamil
MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.
MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.
References (14)
- Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
- Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
- Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
- Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
- O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
- Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
- Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
- Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
- Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
- Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
- Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
- McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
- Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
- Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.