Skip to main content

Drug Interactions between Depoject-80 and Fluzone Preservative-Free Pediatric

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

methylPREDNISolone influenza virus vaccine, inactivated

Applies to: Depoject-80 (methylprednisolone) and Fluzone Preservative-Free Pediatric (influenza virus vaccine, inactivated)

MONITOR: The administration of inactivated, killed, or otherwise noninfectious vaccines to immunosuppressed patients is generally safe but may be associated with a diminished or suboptimal immunologic response due to antibody inhibition. Such patients may include those who have recently received or are receiving immunosuppressive agents, antilymphocyte globulins, alkylating agents, antimetabolites, radiation, some antirheumatic agents, high dosages of corticosteroids or adrenocorticotropic agents (e.g., greater than or equal to 2 mg/kg/day or 20 mg/day of prednisone or equivalent for 14 consecutive days or more), or long-term topical or inhaled corticosteroids.

MANAGEMENT: In general, the U.S. Department of Public Health Advisory Committee on Immunization Practices (ACIP) recommends that inactivated or killed vaccines be administered to non-HIV immunosuppressed patients according to the same guidelines as for healthy patients. However, higher dosages, more frequent boosters, and/or serological testing may be required in some cases. Local guidelines and prescribing information for individual vaccines should be consulted. For Haemophilus influenzae b vaccine, some experts recommend that it be administered at least 2 weeks before starting or 3 months after discontinuing chemotherapy when used in patients with Hodgkin's disease. For rabies vaccine, some authorities suggest that immunosuppressive agents should generally be avoided during postexposure therapy except when absolutely necessary for the treatment of other conditions. For SARS-CoV-2 (COVID-19) vaccines, vaccination should generally be completed at least 2 weeks before initiation or resumption of immunosuppressive therapies; however, decisions to delay or temporarily withhold immunosuppressive therapy to complete COVID-19 vaccination should consider the individual's risks relative to their underlying condition. Some authorities recommend administering the COVID-19 vaccine approximately 4 weeks prior to the next scheduled therapy for those on B-cell-depleting therapies on a continuing basis. Additional shots, boosters, and even revaccination may be appropriate depending on age, prior COVID-19 vaccine formulation(s) received, current or planned immunosuppressive therapy, and other factors in individuals with moderate to severe immune compromise due to medical conditions or immunosuppressive medications or treatments (e.g., solid organ transplant recipients on immunosuppressive therapy; patients on active treatment for solid tumor and hematologic malignancies). Vaccines may generally be administered to patients receiving corticosteroids as replacement therapy (e.g., for Addison's disease).

References

  1. "Product Information. Fluzone (influenza virus vaccine, inactivated)." Connaught Laboratories Inc
  2. "Product Information. Omnihib (haemophilus b conjugate vaccine (obsolete))." SmithKline Beecham PROD
  3. "Product Information. Havrix (HepA) (hepatitis A adult vaccine)." SmithKline Beecham PROD
  4. CDC. Centers for Disease Control and Prevention/ "Recommendations of the advisory committtee on immunization practices (ACIP): use of vaccines and immune globulins in persons with altered immunocompetence." MMWR Morb Mortal Wkly Rep 42(RR-04) (1993): 1-18
  5. "Product Information. Imovax Rabies (rabies vaccine, human diploid cell)." sanofi pasteur (2022):
  6. "Product Information. Biothrax (anthrax vaccine adsorbed)." Emergent BioSolutions Inc. (2003):
  7. Cerner Multum, Inc. "Australian Product Information." O 0
  8. "Product Information. Influenza Virus Vaccine, H5N1, Inactivated (influenza virus vaccine, H5N1, inactivated)." GlaxoSmithKline (2022):
  9. CDC Centers for Disease Control and Prevention "General Best Practice Guidelines for Immunization: Altered Immunocompetence. https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/immunocompetence.pdf" (2019):
  10. Department of Health. National Health Service "Immunisation Against Infectious Disease - "The Green Book". Chapter 6: Contraindications and special considerations. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/655225/Greenbook_chapter_6.pdf" (2019):
  11. CDC Centers for Disease Control and Prevention "Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html" (2022):
  12. Centers for Disease Control and Prevention "Use of COVID-19 vaccines in the U.S. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html" (2023):
  13. UK Health Security Agency "COVID-19: the green book, chapter 14a https://www.gov.uk/government/publications/covid-19-the-green-book-chapter-14a" (2023):
  14. Public Health Agency of Canada "Immunization of immunocompromised persons: Canadian immunization guide https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-3-vaccination-specific-populations/page-8-immunization-immunocompromised-p" (2023):
  15. Public Health Agency of Canada "COVID-19 vaccines: Canadian immunization guide. https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-4-active-vaccines/page-26-covid-19-vaccine.html" (2023):
  16. Australian Government. Department of Health and Aged Care "Australian immunisation handbook: COVID-19. https://immunisationhandbook.health.gov.au/contents/vaccine-preventable-diseases/covid-19" (2023):
View all 16 references

Switch to consumer interaction data

Drug and food interactions

Moderate

methylPREDNISolone food

Applies to: Depoject-80 (methylprednisolone)

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther 49 (1991): 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  4. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie 49 (1994): 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  8. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther 58 (1995): 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol 36 (1996): 469-76
  11. Majeed A, Kareem A "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol 10 (1996): 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol 42 (1996): p662
  13. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther 63 (1998): 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet 23 (1998): 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther 64 (1998): 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther 64 (1998): 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  22. Eagling VA, Profit L, Back DJ "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol 48 (1999): 543-52
  23. Damkier P, Hansen LL, Brosen K "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol 48 (1999): 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther 21 (1999): 1890-9
  25. Dresser GK, Spence JD, Bailey DG "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet 38 (2000): 41-57
  26. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol 49 (2000): 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit 23 (2001): 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol 44 (1993): 295-8
  32. Flanagan D "Understanding the grapefruit-drug interaction." Gen Dent 53 (2005): 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.