Skip to main content

Drug Interactions between Decadron with Xylocaine and Trexall

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

methotrexate dexAMETHasone

Applies to: Trexall (methotrexate) and Decadron with Xylocaine (dexamethasone / lidocaine)

MONITOR: Although they are often used together in clinical practice, limited data suggest that corticosteroids may increase the risk of methotrexate toxicity. Individual cases of severe and fatal bone marrow suppression and fatal systemic moniliasis have been reported. Data have been conflicting. A pediatric study found no increased methotrexate toxicity; however, hepatic enzyme elevations were noted. The mechanism is unknown.

MANAGEMENT: Close monitoring for signs and symptoms of bone marrow suppression and nephrotoxicity is advisable during concomitant administration. Patients should be advised to report possible symptoms of toxicity including nausea, vomiting, diarrhea, stomatitis, sore throat, chills, fever, rash, unusual bruising or bleeding, jaundice, dark urine, swelling of the extremities, or shortness of breath to their physician.

References

  1. Lafforgue P, Monjanel-Mouterde S, Durand A, Catalin J, Acquaviva PC (1993) "Is there an interaction between low doses of corticosteroids and methotrexate in patients with rheumatoid arthritis? A pharmacokinetic study in 33 patients." J Rheumatol, 20, p. 263-7
  2. Roenigk HH, Fowler-Bergfeld W, Curtis GH (1969) "Methotrexate for psoriasis in weekly oral doses." Arch Dermatol, 99, p. 86-93
  3. Wolff JE, Hauch H, Kuhl J, Egeler RM, Jurgens H (1998) "Dexamethasone increases hepatotoxicity of MTX in children with brain tumors." Anticancer Res, 18, p. 2895-900

Switch to consumer interaction data

Minor

lidocaine dexAMETHasone

Applies to: Decadron with Xylocaine (dexamethasone / lidocaine) and Decadron with Xylocaine (dexamethasone / lidocaine)

Coadministration with inducers of CYP450 1A2 and/or 3A4 may decrease the plasma concentrations of lidocaine, which is primarily metabolized by these isoenzymes. In four healthy volunteers (2 smokers and 2 nonsmokers), administration of a single 400 mg oral dose of lidocaine following pretreatment with the CYP450 inducer phenobarbital (15 mg/day for 4 weeks, followed by 30 mg/day for 4 weeks) decreased lidocaine systemic exposure (AUC) by 37% and increased its oral clearance by 56% compared to administration of lidocaine alone. In another study, the mean bioavailability of a single 750 mg oral dose of lidocaine in six patients receiving chronic antiepileptic drug therapy (consisting of one or more of the following enzyme-inducing anticonvulsants: phenobarbital, primidone, phenytoin, carbamazepine) was approximately 2.5-fold lower than that reported for six healthy control subjects, while intrinsic clearance was nearly threefold higher. By contrast, the interaction was modest for lidocaine administered intravenously, suggesting induction of primarily hepatic first-pass rather than systemic metabolism of lidocaine. When a single 100 mg dose of lidocaine was given intravenously, mean lidocaine AUC was reduced by less than 10% and serum clearance increased by just 17% in the epileptic patients compared to controls. These changes were not statistically significant. Likewise, mean lidocaine AUC decreased by approximately 11% and plasma clearance increased by 15% when a single 50 mg intravenous dose of lidocaine was administered following pretreatment with the potent CYP450 inducer rifampin (600 mg/day for six days) in ten healthy, nonsmoking male volunteers. Another pharmacokinetic study found that cigarette smoke, an inducer of CYP450 1A2, reduced the bioavailability of lidocaine when administered orally, but had only minor effects on lidocaine administered intravenously. When 4 smokers and 5 non-smokers received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smoker's systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. The clinical impact of smoking on lidocaine has not been studied, however, a loss of efficacy may occur.

References

  1. Heinonen J, Takki S, Jarho L (1970) "Plasma lidocaine levels in patients treated with potential inducers of microsomal enzymes." Acta Anaesthesiol Scand, 14, p. 89-95
  2. Perucca E, Richens A (1979) "Reduction of oral bioavailability of lignocaine by induction of first pass metabolism in epileptic patients." Br J Clin Pharmacol, 8, p. 21-31
  3. Perucca E, Ruprah M, Richens A, Park BK, Betteridge DJ, Hedges AM (1981) "Effect of low-dose phenobarbitone on five indirect indices of hepatic microsomal enzyme induction and plasma lipoproteins in normal subjects." Br J Clin Pharmacol, 12, p. 592-6
  4. Reichel C, Skodra T, Nacke A, Spengler U, Sauerbruch T (1998) "The lignocaine metabolite (MEGX) liver function test and P-450 induction in humans." Br J Clin Pharmacol, 46, p. 535-9
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Moderate

lidocaine food

Applies to: Decadron with Xylocaine (dexamethasone / lidocaine)

MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.

MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.

MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.

References

  1. Huet PM, LeLorier J (1980) "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther, 28, p. 208-15
  2. (2024) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc.
  3. (2015) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation
  4. (2022) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd
  5. (2022) "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd
  6. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/
  7. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/
View all 7 references

Switch to consumer interaction data

Moderate

methotrexate food

Applies to: Trexall (methotrexate)

MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.

MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.

References

  1. Nesher G, Mates M, Zevin S (2003) "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum, 48, p. 571-572

Switch to consumer interaction data

Moderate

methotrexate food

Applies to: Trexall (methotrexate)

GENERALLY AVOID: Coadministration of methotrexate with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. Methotrexate, especially at higher dosages or during prolonged treatment, has been associated with severe hepatotoxicity including acute hepatitis, chronic fibrosis, cirrhosis, and fatal liver failure.

MANAGEMENT: The risk of hepatic injury should be considered when methotrexate is used with other potentially hepatotoxic agents (e.g., acetaminophen; alcohol; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; ketolide and macrolide antibiotics; kinase inhibitors; minocycline; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; sulfonamides; tamoxifen; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; lipid-lowering medications such as fenofibrate, lomitapide, mipomersen, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice). Baseline and periodic monitoring of hepatic function is recommended, while liver biopsy may be warranted during long-term use of methotrexate. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, pale stools, and jaundice.

References

  1. (2002) "Product Information. Methotrexate (methotrexate)." Lederle Laboratories
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. (2023) "Product Information. Methotrexate (methotrexate)." Hospira Inc

Switch to consumer interaction data

Moderate

methotrexate food

Applies to: Trexall (methotrexate)

MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.

MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.

References

  1. Nesher G, Mates M, Zevin S (2003) "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum, 48, p. 571-572

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.