Skip to main content

Drug Interactions between Decadron with Xylocaine and Docefrez

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Minor

lidocaine dexAMETHasone

Applies to: Decadron with Xylocaine (dexamethasone / lidocaine) and Decadron with Xylocaine (dexamethasone / lidocaine)

Coadministration with inducers of CYP450 1A2 and/or 3A4 may decrease the plasma concentrations of lidocaine, which is primarily metabolized by these isoenzymes. In four healthy volunteers (2 smokers and 2 nonsmokers), administration of a single 400 mg oral dose of lidocaine following pretreatment with the CYP450 inducer phenobarbital (15 mg/day for 4 weeks, followed by 30 mg/day for 4 weeks) decreased lidocaine systemic exposure (AUC) by 37% and increased its oral clearance by 56% compared to administration of lidocaine alone. In another study, the mean bioavailability of a single 750 mg oral dose of lidocaine in six patients receiving chronic antiepileptic drug therapy (consisting of one or more of the following enzyme-inducing anticonvulsants: phenobarbital, primidone, phenytoin, carbamazepine) was approximately 2.5-fold lower than that reported for six healthy control subjects, while intrinsic clearance was nearly threefold higher. By contrast, the interaction was modest for lidocaine administered intravenously, suggesting induction of primarily hepatic first-pass rather than systemic metabolism of lidocaine. When a single 100 mg dose of lidocaine was given intravenously, mean lidocaine AUC was reduced by less than 10% and serum clearance increased by just 17% in the epileptic patients compared to controls. These changes were not statistically significant. Likewise, mean lidocaine AUC decreased by approximately 11% and plasma clearance increased by 15% when a single 50 mg intravenous dose of lidocaine was administered following pretreatment with the potent CYP450 inducer rifampin (600 mg/day for six days) in ten healthy, nonsmoking male volunteers. Another pharmacokinetic study found that cigarette smoke, an inducer of CYP450 1A2, reduced the bioavailability of lidocaine when administered orally, but had only minor effects on lidocaine administered intravenously. When 4 smokers and 5 non-smokers received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smoker's systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. The clinical impact of smoking on lidocaine has not been studied, however, a loss of efficacy may occur.

References

  1. Heinonen J, Takki S, Jarho L (1970) "Plasma lidocaine levels in patients treated with potential inducers of microsomal enzymes." Acta Anaesthesiol Scand, 14, p. 89-95
  2. Perucca E, Richens A (1979) "Reduction of oral bioavailability of lignocaine by induction of first pass metabolism in epileptic patients." Br J Clin Pharmacol, 8, p. 21-31
  3. Perucca E, Ruprah M, Richens A, Park BK, Betteridge DJ, Hedges AM (1981) "Effect of low-dose phenobarbitone on five indirect indices of hepatic microsomal enzyme induction and plasma lipoproteins in normal subjects." Br J Clin Pharmacol, 12, p. 592-6
  4. Reichel C, Skodra T, Nacke A, Spengler U, Sauerbruch T (1998) "The lignocaine metabolite (MEGX) liver function test and P-450 induction in humans." Br J Clin Pharmacol, 46, p. 535-9
View all 4 references

Switch to consumer interaction data

Minor

dexAMETHasone DOCEtaxel

Applies to: Decadron with Xylocaine (dexamethasone / lidocaine) and Docefrez (docetaxel)

Although docetaxel is a substrate of CYP450 3A4, no significant interaction has been reported with dexamethasone or prednisone, both of which are inducers of the isoenzyme. According to the product labeling, docetaxel total body clearance was not modified by pretreatment with dexamethasone. In addition, dexamethasone does not affect the protein-binding of docetaxel, which is more than 95% protein-bound. The effect of prednisone on the pharmacokinetics of docetaxel administered with standard dexamethasone premedication was studied in 42 patients. No effect on the pharmacokinetics of docetaxel was observed.

References

  1. (2001) "Product Information. Taxotere (docetaxel)." Rhone Poulenc Rorer
  2. Aronson JK, Grahame-Smith DG (1981) "Clinical pharmacology: adverse drug interactions." Br Med J, 282, p. 288-91
  3. McInnes GT, Brodie MJ (1988) "Drug interactions that matter: a critical reappraisal." Drugs, 36, p. 83-110

Switch to consumer interaction data

Drug and food interactions

Major

DOCEtaxel food

Applies to: Docefrez (docetaxel)

GENERALLY AVOID: Coadministration with inhibitors of CYP450 3A4, such as grapefruit juice, may significantly increase the plasma concentrations of docetaxel, which is a substrate of the isoenzyme. Current data suggest that consumption of large quantities of grapefruit juice inhibit both intestinal and hepatic CYP450 3A4 due to certain compounds present in grapefruit. In a pharmacokinetic study consisting of 7 cancer patients, mean dose-normalized docetaxel systemic exposure (AUC) increased by 2.2-fold and clearance decreased by 49% when intravenous docetaxel was given at a reduced dosage of 10 mg/m2 in combination with the potent CYP450 3A4 inhibitor ketoconazole (200 mg orally once daily for 3 days) compared to docetaxel administered alone at 100 mg/m2. In addition, a case report of a 52-year-old woman with esophageal squamous cell carcinoma receiving a twice weekly chemotherapy regimen including intravenous docetaxel (40 mg/m2) reported that docetaxel AUC increased by 65% compared with the AUC target of 1.96 mg*h/L and clearance decreased by 63%, with a 71% reduction in the patient's neutrophil count. In the absence of other CYP450 3A4 inhibitors, these effects were attributed to daily consumption of 250 mL of grapefruit juice, which the patient had been consuming for at least 3 months. Two weeks after the patient ceased the grapefruit juice, the docetaxel AUC was closer to the target value and the neutrophil count reduction was less than 35%.

MANAGEMENT: The use of docetaxel in combination with grapefruit and grapefruit juice should generally be avoided. If concomitant use is required, a reduced dosage of docetaxel should be considered, particularly if used with large amounts of grapefruit juice, and therapeutic drug monitoring of docetaxel considered per local treatment protocols. Patients should be closely monitored for the development of docetaxel toxicity such as myelosuppression, stomatitis, neurotoxicity (e.g., paraesthesia, dysesthesia, pain), myalgia, asthenia, fluid retention, nausea, vomiting, and diarrhea.

References

  1. (2001) "Product Information. Taxotere (docetaxel)." Rhone Poulenc Rorer
  2. Aronson JK, Grahame-Smith DG (1981) "Clinical pharmacology: adverse drug interactions." Br Med J, 282, p. 288-91
  3. McInnes GT, Brodie MJ (1988) "Drug interactions that matter: a critical reappraisal." Drugs, 36, p. 83-110
  4. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  5. Yong WP, Wang LZ, Tham LS, et al. (2008) "A phase I study of docetaxel with ketoconazole modulation in patients with advanced cancers." Cancer Chemother Pharmacol, 62, p. 243-51
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Engels FK, Mathot RA, Loos WJ, van Schaik RH, Verweij J (2006) "Influence of high-dose ketoconazole on the pharmacokinetics of docetaxel." Cancer Biol Ther, 5, p. 833-9
  8. Valenzuela B, Rebollo J, Perez T, Brugarolas A, Perez-Ruixo JJ (2011) "Effect of grapefruit juice on the pharmacokinetics of docetaxel in cancer patients: a case report." Br J Clin Pharmacol
  9. Starr SP, Hammann F, Gotta V, et al. (2016) "Pharmacokinetic interaction between taxanes and amiodarone leading to severe toxicity." Br J Clin Pharmacol, 450, p. 22-27
View all 9 references

Switch to consumer interaction data

Moderate

lidocaine food

Applies to: Decadron with Xylocaine (dexamethasone / lidocaine)

MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.

MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.

MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.

References

  1. Huet PM, LeLorier J (1980) "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther, 28, p. 208-15
  2. (2024) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc.
  3. (2015) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation
  4. (2022) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd
  5. (2022) "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd
  6. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/
  7. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.