Drug Interactions between cyclosporine and fostemsavir
This report displays the potential drug interactions for the following 2 drugs:
- cyclosporine
- fostemsavir
Interactions between your drugs
cycloSPORINE fostemsavir
Applies to: cyclosporine and fostemsavir
MONITOR: Coadministration with potent inhibitors of CYP450 3A4, P-glycoprotein (P-gp), and/or breast cancer resistance protein (BCRP) may increase the plasma concentrations of temsavir, the active moiety of fostemsavir. According to the prescribing information, temsavir is a substrate of CYP450 3A4, esterases, P-gp, and BCRP. In pharmacokinetic studies, mean temsavir peak plasma concentration (Cmax) increased by approximately 50% to 80% and systemic exposure (AUC) increased by approximately 35% to 100% when fostemsavir 600 mg twice daily was administered with various potent CYP450 3A4 inhibitors (atazanavir/ritonavir 300 mg/100 mg once daily; darunavir/ritonavir 600 mg/100 mg twice daily; darunavir/ritonavir/etravirine 600 mg/100 mg/200 mg twice daily; ritonavir 100 mg once daily; cobicistat 150 mg once daily; darunavir/cobicistat 800 mg/150 mg once daily). These changes are not considered clinically relevant. However, increased temsavir exposure may increase the risk of QT prolongation.
MANAGEMENT: No dosage adjustments are recommended for fostemsavir when used with potent CYP450 3A4, P-gp, and/or BCRP inhibitors. It may be advisable to monitor patients for increased adverse effects such as QT prolongation during coadministration, particularly in the elderly and patients with risk factors for torsade de pointes.
References (3)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2020) "Product Information. Rukobia (fostemsavir)." ViiV Healthcare
Drug and food interactions
cycloSPORINE food
Applies to: cyclosporine
GENERALLY AVOID: Administration with grapefruit juice (compared to water or orange juice) has been shown to increase blood concentrations of cyclosporine with a relatively high degree of interpatient variability. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits.
GENERALLY AVOID: Administration with red wine or purple grape juice may decrease blood concentrations of cyclosporine. In 12 healthy volunteers, 12 ounces total of a merlot consumed 15 minutes prior to and during cyclosporine administration (single 8 mg/kg dose of Sandimmune) decreased cyclosporine peak blood concentration (Cmax) and systemic exposure (AUC) by 38% and 30%, respectively, compared to water. The time to reach peak concentration (Tmax) doubled, and oral clearance increased 50%. Similarly, one study were 12 healthy patients were administered purple grape juice and a single dose of cyclosporine showed a 30% and a 36% decrease in cyclosporine systemic exposure (AUC) and peak blood concentration (Cmax), respectively. The exact mechanism of interaction is unknown but may involve decreased cyclosporine absorption.
MONITOR: Food has been found to have variable effects on the absorption of cyclosporine. There have been reports of impaired, unchanged, and enhanced absorption during administration with meals relative to the fasting state. The mechanisms are unclear. Some investigators found an association with the fat content of food. In one study, increased fat intake resulted in significantly increased cyclosporine bioavailability and clearance. However, the AUC and pharmacodynamics of cyclosporine were not significantly affected, thus clinical relevance of these findings may be minimal.
MANAGEMENT: Patients receiving cyclosporine therapy should be advised to either refrain from or avoid fluctuations in the consumption of grapefruits and grapefruit juice. Until more data are available, the consumption of red wine or purple grape juice should preferably be avoided or limited. All oral formulations of cyclosporine should be administered on a consistent schedule with regard to time of day and relation to meals so as to avoid large fluctuations in plasma drug levels.
References (13)
- Honcharik N, Yatscoff RW, Jeffery JR, Rush DN (1991) "The effect of meal composition on cyclosporine absorption." Transplantation, 52, p. 1087-9
- Ducharme MP, Provenzano R, Dehoornesmith M, Edwards DJ (1993) "Trough concentrations of cyclosporine in blood following administration with grapefruit juice." Br J Clin Pharmacol, 36, p. 457-9
- Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
- Hollander AAMJ, Vanrooij J, Lentjes EGWM, Arbouw F, Vanbree JB, Schoemaker RC, Vanes LA, Vanderwoude FJ, Cohen AF (1995) "The effect of grapefruit juice on cyclosporine and prednisone metabolism in transplant patients." Clin Pharmacol Ther, 57, p. 318-24
- (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
- Tan KKC, Trull AK, Uttridge JA, Metcalfe S, Heyes CS, Facey S, Evans DB (1995) "Effect of dietary fat on the pharmacokinetics and pharmacodynamics of cyclosporine in kidney transplant recipients." Clin Pharmacol Ther, 57, p. 425-33
- Yee GC, Stanley DL, Pessa LJ, et al. (1995) "Effect of grrapefruit juice on blood cyclosporin concentration." Lancet, 345, p. 955-6
- Ducharme MP, Warbasse LH, Edwards DJ (1995) "Disposition of intravenous and oral cyclosporine after administration with grapefruit juice." Clin Pharmacol Ther, 57, p. 485-91
- Ioannidesdemos LL, Christophidis N, Ryan P, Angelis P, Liolios L, Mclean AJ (1997) "Dosing implications of a clinical interaction between grapefruit juice and cyclosporine and metabolite concentrations in patients with autoimmune diseases." J Rheumatol, 24, p. 49-54
- Min DI, Ku YM, Perry PJ, Ukah FO, Ashton K, Martin MF, Hunsicker LG (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics in renal transplant patients." Transplantation, 62, p. 123-5
- Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
- Tsunoda SM, Harris RZ, Christians U, et al. (2001) "Red wine decreases cyclosporine bioavailability." Clin Pharmacol Ther, 70, p. 462-7
- Oliveira-Freitas VL, Dalla Costa T, Manfro RC, Cruz LB, Schwartsmann G (2010) "Influence of purple grape juice in cyclosporine availability." J Ren Nutr, 20, p. 309-13
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.