Drug Interactions between CVS Allergy & Sinus Headache and metoprolol
This report displays the potential drug interactions for the following 2 drugs:
- CVS Allergy & Sinus Headache (acetaminophen/diphenhydramine/phenylephrine)
- metoprolol
Interactions between your drugs
metoprolol diphenhydrAMINE
Applies to: metoprolol and CVS Allergy & Sinus Headache (acetaminophen / diphenhydramine / phenylephrine)
MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.
MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients should also avoid driving or operating hazardous machinery until they know how the medications affect them.
References (10)
- Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
- Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
- Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
- Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
- Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
- Cerner Multum, Inc. "Australian Product Information."
- Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
- Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
- (2023) "Product Information. Buprenorphine (buprenorphine)." G.L. Pharma UK Ltd
- (2023) "Product Information. Temgesic (buprenorphine)." Reckitt Benckiser Pty Ltd
metoprolol phenylephrine
Applies to: metoprolol and CVS Allergy & Sinus Headache (acetaminophen / diphenhydramine / phenylephrine)
MONITOR: A case report suggests that beta-blockers may enhance the pressor response to phenylephrine. The proposed mechanism involves blockade of beta-2 adrenergic receptors in the peripheral vasculature, resulting in unopposed alpha-adrenergic effect of phenylephrine that is responsible for vasoconstriction. Additionally, beta-blockers may desensitize baroreceptors that normally modulate heart rate in response to blood pressure elevations by increasing vagal activity on the sinoauricular node. In the case report, a woman with a history of hypertension treated with hydrochlorothiazide (50 mg twice a day) and propranolol (40 mg four times a day) developed sudden bitemporal pain and became unconscious shortly after she was given one drop of a 10% phenylephrine solution in each eye during an ophthalmic examination. She subsequently died of intracerebral hemorrhage due to rupture of a berry aneurysm. The authors noted that the patient had received the same eye drop without incident on two previous occasions when she was not receiving blood pressure or other medications. Nevertheless, an interaction between phenylephrine and beta-blockers is not well established. Phenylephrine acts predominantly on alpha-adrenergic receptors and has little or no direct effect on beta-2 adrenergic receptors, although it may affect them indirectly by enhancing release of norepinephrine from adrenergic nerve terminals. In a study of 12 patients with hypertension, mean phenylephrine doses required to increase systolic blood pressure by 25 mmHg were not significantly different following 2 weeks on propranolol, metoprolol, and placebo (4.8 mcg/kg, 4.7 mcg/kg, and 5.3 mcg/kg, respectively). Baroreceptor-mediated decreases in heart rate during phenylephrine infusion were also in the same range on propranolol, metoprolol, and placebo over baseline heart rate values. In another study, no changes in blood pressure or heart rate were observed in hypertensive patients treated with metoprolol who were given 0.5 to 4 mg doses of phenylephrine intranasally every hour up to a total of 7.5 to 15 mg, or 4 to 30 times the usual recommended dose, compared to placebo or baseline values. These results support the lack of a significant interaction between beta-blockers and phenylephrine.
MANAGEMENT: Until more information is available, caution should be exercised when phenylephrine is used in combination with beta-blockers including ophthalmic formulations, which may be systemically absorbed and can produce clinically significant systemic effects even at low or undetectable plasma levels. Monitoring of blood pressure should be considered, particularly when phenylephrine is administered intravenously or intraocularly. Although an interaction is not likely to occur with cardioselective beta-blockers, caution may be advisable when high dosages are used, since cardioselectivity is not absolute and may be lost with larger doses. A beta-blocker such as propranolol may be used to treat cardiac arrhythmias that occur during administration of phenylephrine.
References (2)
- Cass E, Kadar D, Stein HA (1979) "Hazards of phenylephrine topical medication in persons taking propranolol." Can Med Assoc J, 120, p. 1261-2
- Myers MG, Iazzetta JJ (1982) "Intranasally administered phenylephrine and blood pressure." Can Med Assoc J, 127, p. 365-6
Drug and food interactions
acetaminophen food
Applies to: CVS Allergy & Sinus Headache (acetaminophen / diphenhydramine / phenylephrine)
GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.
MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).
References (12)
- Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
- O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
- Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
- Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
- McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
- Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
- Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
- (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
- Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
- Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
metoprolol food
Applies to: metoprolol
ADJUST DOSING INTERVAL: The bioavailability of metoprolol may be enhanced by food.
MANAGEMENT: Patients may be instructed to take metoprolol at the same time each day, preferably with or immediately following meals.
References (2)
- (2001) "Product Information. Lopressor (metoprolol)." Novartis Pharmaceuticals
- Darcy PF (1995) "Nutrient-drug interactions." Adverse Drug React Toxicol Rev, 14, p. 233-54
diphenhydrAMINE food
Applies to: CVS Allergy & Sinus Headache (acetaminophen / diphenhydramine / phenylephrine)
GENERALLY AVOID: Use of anticholinergic agents with alcohol may result in sufficient impairment of attention so as to render driving and operating machinery more hazardous. In addition, the potential for abuse may be increased with the combination. The mechanism of interaction is not established but may involve additive depressant effects on the central nervous system. No effect of oral propantheline or atropine on blood alcohol levels was observed in healthy volunteers when administered before ingestion of a standard ethanol load. However, one study found impairment of attention in subjects given atropine 0.5 mg or glycopyrrolate 1 mg in combination with alcohol.
MANAGEMENT: Alcohol should generally be avoided during therapy with anticholinergic agents. Patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them.
References (1)
- Linnoila M (1973) "Drug effects on psychomotor skills related to driving: interaction of atropine, glycopyrrhonium and alcohol." Eur J Clin Pharmacol, 6, p. 107-12
metoprolol food
Applies to: metoprolol
ADJUST DOSING INTERVAL: Concurrent administration with calcium salts may decrease the oral bioavailability of atenolol and possibly other beta-blockers. The exact mechanism of interaction is unknown. In six healthy subjects, calcium 500 mg (as lactate, carbonate, and gluconate) reduced the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of atenolol (100 mg) by 51% and 32%, respectively. The elimination half-life increased by 44%. Twelve hours after the combination, beta-blocking activity (as indicated by inhibition of exercise tachycardia) was reduced compared to that with atenolol alone. However, during a 4-week treatment in six hypertensive patients, there was no difference in blood pressure values between treatments. The investigators suggest that prolongation of the elimination half-life induced by calcium coadministration may have led to atenolol cumulation during long-term dosing, which compensated for the reduced bioavailability.
MANAGEMENT: It may help to separate the administration times of beta-blockers and calcium products by at least 2 hours. Patients should be monitored for potentially diminished beta-blocking effects following the addition of calcium therapy.
References (1)
- Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E (1981) "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther, 30, p. 429-35
phenylephrine food
Applies to: CVS Allergy & Sinus Headache (acetaminophen / diphenhydramine / phenylephrine)
MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.
MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.
References (7)
- Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
- Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
- (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
- (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
- (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
- (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
- (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
acetaminophen food
Applies to: CVS Allergy & Sinus Headache (acetaminophen / diphenhydramine / phenylephrine)
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.