Skip to main content

Drug Interactions between crizotinib and estradiol / norethindrone / relugolix

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

crizotinib relugolix

Applies to: crizotinib and estradiol / norethindrone / relugolix

GENERALLY AVOID: Coadministration with inhibitors of the P-glycoprotein (P-gp) efflux transporter may increase the plasma concentrations of relugolix, particularly when the inhibitors are given orally. Relugolix is a substrate for intestinal P-gp. In vitro, it is metabolized primarily by CYP450 3A and, to a lesser extent, by CYP450 2C8. When relugolix was coadministered with erythromycin, a combined P-gp and moderate CYP450 3A inhibitor, relugolix peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 6.2-fold. Increased exposure to relugolix may increase the risk and/or severity of adverse effects such as hot flushes; weight gain; decreased sex drive; erectile function difficulties; QT interval prolongation; musculoskeletal pain; constipation; diarrhea; increases in glucose, triglyceride, and liver transaminase levels; and decreased hemoglobin. No clinically significant differences in the pharmacokinetics of relugolix were observed when coadministered with voriconazole, a strong CYP450 3A inhibitor that does not inhibit P-gp.

GENERALLY AVOID: Long-term androgen deprivation therapy, including relugolix, can prolong the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In a single, active-controlled, clinical study comparing abarelix to LHRH (luteinizing hormone releasing hormone) agonist plus nonsteroidal antiandrogen therapy, both therapies were found to prolong the mean Fridericia-corrected QT interval (QTcF) by more than 10 msec from baseline. In approximately 20% of patients in both groups, there were either changes from baseline QTc of greater than 30 msec or end-of-treatment QTc values exceeding 450 msec. Similar results were observed in two other Phase 3 studies with abarelix and the active-control treatments. In a randomized, active-controlled trial comparing degarelix to leuprolide, three patients (<1%) in the pooled degarelix group and four patients (2%) in the leuprolide 7.5 mg group had a QTcF of 500 ms or greater. From baseline to end of study, the median change was 12.3 msec for degarelix and 16.7 msec for leuprolide. Investigators believe that long-term androgen deprivation is responsible for these changes, as testosterone has been found to shorten ventricular repolarization. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Concomitant use of relugolix with orally administered P-gp inhibitors should be avoided when possible. In addition, the benefits of androgen deprivation therapy such as relugolix should be carefully assessed against the potential risk in patients receiving other drugs known to prolong the QT interval, many of which are also P-gp inhibitors (e.g., amiodarone, azithromycin, bepridil, cabozantinib, clarithromycin, crizotinib, dronedarone, elagolix, erythromycin, ketoconazole, lapatinib, mifepristone, nilotinib, osimertinib, propafenone, quinidine, quinine, ranolazine, tacrolimus, telithromycin, valbenazine, vemurafenib). If coadministration is required, the manufacturer recommends taking relugolix first and separating the dosing by at least 6 hours. Electrolyte abnormalities should be corrected prior to initiating therapy, and periodic monitoring of electrocardiograms and electrolytes should be considered. Alternatively, when relugolix is used as monotherapy for the treatment of prostate cancer, the prescribing information states that treatment with relugolix may be interrupted for up to two weeks if a short course of treatment with a P-gp inhibitor is necessary. Following interruption of relugolix for more than 7 days, the manufacturer recommends restarting therapy with a loading dose of 360 mg on the first day, then continuing with a dose of 120 mg once daily.

References (1)
  1. (2021) "Product Information. Orgovyx (relugolix)." Myovant Sciences, Inc.

Drug and food interactions

Major

crizotinib food

Applies to: crizotinib

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of crizotinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. Because crizotinib is associated with concentration-dependent prolongation of the QT interval, increased levels may potentiate the risk of ventricular arrhythmias such as torsade de pointes and sudden death.

Food has no significant effect on the gastrointestinal absorption of crizotinib. According to the product labeling, a high-fat meal reduced crizotinib peak plasma concentration (Cmax) and systemic exposure (AUC) by approximately 14%.

MANAGEMENT: Patients treated with crizotinib should avoid consumption of grapefruit, grapefruit juice, and any supplement containing grapefruit extract. Crizotinib may be taken without regards to food.

References (1)
  1. (2011) "Product Information. Xalkori (crizotinib)." Pfizer U.S. Pharmaceuticals Group
Moderate

norethindrone food

Applies to: estradiol / norethindrone / relugolix

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References (32)
  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  4. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  22. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  23. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  25. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  32. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
Minor

estradiol food

Applies to: estradiol / norethindrone / relugolix

Coadministration with grapefruit juice may increase the bioavailability of oral estrogens. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. In a small, randomized, crossover study, the administration of ethinyl estradiol with grapefruit juice (compared to herbal tea) increased peak plasma drug concentration (Cmax) by 37% and area under the concentration-time curve (AUC) by 28%. Based on these findings, grapefruit juice is unlikely to affect the overall safety profile of ethinyl estradiol. However, as with other drug interactions involving grapefruit juice, the pharmacokinetic alterations are subject to a high degree of interpatient variability. Also, the effect on other estrogens has not been studied.

References (2)
  1. Weber A, Jager R, Borner A, et al. (1996) "Can grapefruit juice influence ethinyl estradiol bioavailability?" Contraception, 53, p. 41-7
  2. Schubert W, Eriksson U, Edgar B, Cullberg G, Hedner T (1995) "Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17B-estradiol." Eur J Drug Metab Pharmacokinet, 20, p. 219-24
Minor

norethindrone food

Applies to: estradiol / norethindrone / relugolix

The central nervous system effects and blood levels of ethanol may be increased in patients taking oral contraceptives, although data are lacking and reports are contradictory. The mechanism may be due to enzyme inhibition. Consider counseling women about this interaction which is unpredictable.

References (1)
  1. Hobbes J, Boutagy J, Shenfield GM (1985) "Interactions between ethanol and oral contraceptive steroids." Clin Pharmacol Ther, 38, p. 371-80

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.