Skip to main content

Drug Interactions between Corzide 40/5 and FBL Kit

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

nadolol lidocaine

Applies to: Corzide 40 / 5 (bendroflumethiazide / nadolol) and FBL Kit (baclofen / flurbiprofen / lidocaine topical)

MONITOR: Some beta-blockers may increase lidocaine levels and risk of toxicity. The proposed mechanism is enzyme inhibition and/or decreased cardiac output and hepatic blood flow resulting in decreased hepatic metabolism of lidocaine. In addition beta-blockers and lidocaine may also have additive negative inotropic effects on the heart. Data have been conflicting and variable.

MANAGEMENT: Patients receiving concurrent therapy should be monitored for drowsiness, mental status changes, bradycardia, and hypotension. Lidocaine levels should be obtained when clinically necessary. If toxicity is suspected, the lidocaine infusion should be decreased, as possible.

References

  1. Miners JO, Wing MH, Lillywhite KJ, Smith KJ (1984) "Failure of "therapeutic" doses of beta-adrenoceptor antagonists to alter the disposition of tolbutamide and lignocaine." Br J Clin Pharmacol, 18, p. 853-60
  2. Ochs HR, Carstens G, Greenblatt DJ (1980) "Reduction in lidocaine clearance during continuous infusion and by coadministration of propranolol." N Engl J Med, 303, p. 373-7
  3. Schneck DW, Luderer JR, Davis D, Vary J (1984) "Effects of nadolol and propranolol on plasma lidocaine clearance." Clin Pharmacol Ther, 36, p. 584-7
  4. Svendsen TL, Tango M, Waldorff S, et al. (1982) "Effects of propranolol and pindolol on plasma lignocaine clearance in man." Br J Clin Pharmacol, 13, s223-6
  5. Conrad KA, Byers JM, Finley PR, Burnham L (1983) "Lidocaine elimination: effects of metoprolol and of propranolol." Clin Pharmacol Ther, 33, p. 133-8
  6. Jordo L, Johnsson G, Lundborg P, Regardh CG (1984) "Pharmacokinetics of lidocaine in healthy individuals pretreated with multiple doses of metoprolol." Int J Clin Pharmacol Ther Toxicol, 22, p. 312-5
  7. Graham CF, Turner WM, Jones JK (1981) "Lidocaine-propranolol interactions ." N Engl J Med, 304, p. 1301
  8. Ochs HR, Skanderra D, Abernethy DR, Greenblatt DJ (1983) "Effect of penbutolol on lidocaine kinetics." Arzneimittelforschung, 33, p. 1680-1
  9. Bax ND, Tucker GT, Lennard MS, Woods HF (1985) "The impairment of lignocaine clearance by propranolol: major contribution from enzyme inhibition." Br J Clin Pharmacol, 19, p. 597-603
  10. Parker G, Ene MD, Daneshmend TK, Roberts CJ (1984) "Do beta blockers differ in their effects on hepatic microsomal enzymes and liver blood flow?" J Clin Pharmacol, 24, p. 493-9
View all 10 references

Switch to consumer interaction data

Moderate

nadolol flurbiprofen

Applies to: Corzide 40 / 5 (bendroflumethiazide / nadolol) and FBL Kit (baclofen / flurbiprofen / lidocaine topical)

MONITOR: Nonsteroidal anti-inflammatory drugs (NSAIDs) may attenuate the antihypertensive effect of beta-blockers. The proposed mechanism is NSAID-induced inhibition of renal prostaglandin synthesis, which results in unopposed pressor activity producing hypertension. In addition, NSAIDs can cause fluid retention, which also affects blood pressure. Indomethacin and piroxicam have been reported to have greater attenuating effects than other NSAIDs, and indomethacin effects may be significant in patients with eclampsia.

MANAGEMENT: Patients receiving a beta-blocker who require prolonged (greater than 1 week) concomitant therapy with an NSAID should have blood pressure monitored more closely following initiation, discontinuation, or change of dosage of the NSAID. The interaction is not expected to occur with low doses (e.g., low-dose aspirin) or intermittent short-term administration of NSAIDs.

References

  1. Salvetti A, Pedrinelli R, Alberici P, Magagna A, Abdel-Haq B (1984) "The influence of indomethacin and sulindac on some pharmacological actions of atenolol in hypertensive patients." Br J Clin Pharmacol, 17 Suppl 1, s108-11
  2. Ylitalo P, Pitkajarvi T, Pyykonen ML, Nurmi AK, Seppala E, Vapaatalo H (1985) "Inhibition of prostaglandin synthesis by indomethacin interacts with the antihypertensive effect of atenolol." Clin Pharmacol Ther, 38, p. 443-9
  3. Radack KL, Deck CC, Bloomfield SS (1987) "Ibuprofen interferes with the efficacy of antihypertensive drugs." Ann Intern Med, 107, p. 628-35
  4. Wong DG, Spence JD, Lamki L, Freeman D, McDonald JW (1986) "Effect of non-steroidal anti-inflammatory drugs on control of hypertension by beta-blockers and diuretics." Lancet, 1, p. 997-1001
  5. Durao V, Prata MM, Goncalves LM (1977) "Modification of antihypertensive effect of beta-adrenoceptor-blocking agents by inhibition of endogenous prostaglandin synthesis." Lancet, 2, p. 1005-7
  6. Abate MA, Neely JL, Layne RD, D'Allessandri R (1991) "Interaction of indomethacin and sulindac with labetalol." Br J Clin Pharmacol, 31, p. 363-6
  7. Salvetti A, Arzilli F, Pedrinelli R, Beggi P, Motolese M (1982) "Interaction between oxprenolol and indomethacin on blood pressure in essential hypertensive patients." Eur J Clin Pharmacol, 22, p. 197-201
  8. Durao V, Prata MM, Concalves LM (1977) "Modification of antihypertensive effect of B-adrenoceptor-blocking agents by inhibition of endogenous prostaglandin synthesis." Lancet, 2, p. 1005-7
  9. Hartmann D, Stief G, Lingenfelder M, Guzelhan C, Horsch AK (1995) "Study on the possible interaction between tenoxicam and atenolol in hypertensive patients." Arzneimittelforschung, 45-1, p. 494-8
View all 9 references

Switch to consumer interaction data

Moderate

nadolol bendroflumethiazide

Applies to: Corzide 40 / 5 (bendroflumethiazide / nadolol) and Corzide 40 / 5 (bendroflumethiazide / nadolol)

MONITOR: Although they are often combined in clinical practice, diuretics and beta-blockers may increase the risk of hyperglycemia and hypertriglyceridemia in some patients, especially in patients with diabetes or latent diabetes. In addition, the risk of QT interval prolongation and arrhythmias (e.g. torsades de pointes) due to sotalol may be increased by potassium-depleting diuretics.

MANAGEMENT: Monitoring of serum potassium levels, blood pressure, and blood glucose is recommended during coadministration. Patients should be advised to seek medical assistance if they experience dizziness, weakness, fainting, fast or irregular heartbeats, or loss of blood glucose control.

References

  1. Dornhorst A, Powell SH, Pensky J (1985) "Aggravation by propranolol of hyperglycaemic effect of hydrochlorothiazide in type II diabetics without alteration of insulin secretion." Lancet, 1, p. 123-6
  2. Roux A, Le Liboux A, Delhotal B, Gaillot J, Flouvat B (1983) "Pharmacokinetics in man of acebutolol and hydrochlorothiazide as single agents and in combination." Eur J Clin Pharmacol, 24, p. 801-6
  3. Dean S, Kendall MJ, Potter S, Thompson MH, Jackson DA (1985) "Nadolol in combination with indapamide and xipamide in resistant hypertensives." Eur J Clin Pharmacol, 28, p. 29-33
  4. (2002) "Product Information. Lozol (indapamide)." Rhone Poulenc Rorer
  5. Marcy TR, Ripley TL (2006) "Aldosterone antagonists in the treatment of heart failure." Am J Health Syst Pharm, 63, p. 49-58
View all 5 references

Switch to consumer interaction data

Moderate

flurbiprofen bendroflumethiazide

Applies to: FBL Kit (baclofen / flurbiprofen / lidocaine topical) and Corzide 40 / 5 (bendroflumethiazide / nadolol)

MONITOR: Concomitant use of nonsteroidal anti-inflammatory drugs (NSAIDs) and diuretics may adversely affect renal function due to NSAID inhibition of the renal synthesis of prostaglandins that help maintain renal perfusion in dehydrated states. The risk may be increased in patients on dietary sodium restriction. At the same time, hypotensive effect of the diuretics may be reduced because inhibition of prostaglandins can lead to unopposed pressor activity and, consequently, elevation in blood pressure. Natriuretic and diuretic effects may also be reduced, as NSAIDs have been reported to cause sodium and water retention, which may account for the increased risk of congestive heart failure associated with the combination. One study showed an increase in the incidence density of congestive heart failure (in patients over 55 years of age) from 9.3 per 1,000 person-years in patients on diuretics to 23.3 per 1,000 person-years in patients on both diuretic and NSAID therapy. NSAIDs may also increase the risk of hyperkalemia associated with potassium-sparing diuretics.

MANAGEMENT: In patients receiving both diuretic and NSAID therapy, management consists of avoiding dehydration and carefully monitoring the patient's renal function and blood pressure. If renal insufficiency or hyperkalemia develops, both drugs should be discontinued until the condition is corrected.

References

  1. Allan SG, Knox J, Kerr F (1981) "Interaction between diuretics and indomethacin." Br Med J, 283, p. 1611
  2. McCarthy JT, Torres VE, Romero JC, et al. (1982) "Acute intrinsic renal failure induced by indomethacin." Mayo Clin Proc, 57, p. 289-96
  3. Favre L, Glasson P, Vallotton MB (1982) "Reversible acute renal failure from combined triamterene and indomethacin." Ann Intern Med, 96, p. 317-20
  4. Poe TE, Scott RB, Keith JF Jr (1983) "Interaction of indomethacin with furosemide." J Fam Pract, 16, p. 610-6
  5. Ahmad S (1984) "Indomethacin-bumetanide interaction: an alert." Am J Cardiol, 54, p. 246-7
  6. Dixey JJ, Noormohamed FH, Lant AF, Brewerton DA (1987) "The effects of naproxen and sulindac on renal function and their interaction with hydrochlorothiazide and piretanide in man." Br J Clin Pharmacol, 23, p. 55-63
  7. Brater DC, Fox WR, Chennavasin P (1981) "Interaction studies with bumetanide and furosemide: effects of probenecid and of indomethacin on response to bumetanide in man." J Clin Pharmacol, 21, p. 647-53
  8. Smith DE, Brater DC, Lin ET, Benet LZ (1979) "Attenuation of furosemide's diuretic effect by indomethacin: pharmacokinetic evaluation." J Pharmacokinet Biopharm, 7, p. 265-74
  9. Mor R, Pitlik S, Rosenfeld JB (1983) "Indomethacin- and Moduretic--induced hyperkalemia." Isr J Med Sci, 19, p. 535-7
  10. Kaufman J, Hamburger R, Matheson J, Flamenbaum W (1981) "Bumetanide-induced diuresis and natriuresis: effect of prostaglandin synthetase inhibition." J Clin Pharmacol, 21, p. 663-7
  11. Favre L, Glasson P, Riondel A, Vallotton MB (1983) "Interaction of diuretics and non-steroidal anti-inflammatory drugs in man." Clin Sci, 64, p. 407-15
  12. Pedrinelli R, Magagna A, Arzilli F, et al. (1980) "Influence of indomethacin on the natriuretic and renin-stimulating effect of bumetanide in essential hypertension." Clin Pharmacol Ther, 28, p. 722-31
  13. Weinberg MS, Quigg RJ, Salant DJ, Bernard DB (1985) "Anuric renal failure precipitated by indomethacin and triamterene." Nephron, 40, p. 216-8
  14. Furst DE (1988) "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl, 17, p. 58-62
  15. Gehr T, Sica DA, Steigler BW, Marshall C (1990) "Interaction of triamterene-hydrochlorothiazide (T-H) and ibuprofen (I)." Clin Pharmacol Ther, 47, p. 200
  16. (2002) "Product Information. HydroDIURIL (hydrochlorothiazide)." Merck & Co., Inc
  17. Watkins J, Abbot EC, Hensby CN, Webster J, Dollery CT (1980) "Attenuation of hypotensive effect of propranolol and thiazide diuretics by indomethacin." Br Med J, 281, p. 702-5
  18. Ripley EB, Gehr TW, Wallace H, Wade J, Kish C, Sica DA (1994) "The effect of nonsteroidal agents (NSAIDs) on the pharmacokinetics and pharmacodynamics of metolazone." Int J Clin Pharmacol Ther, 32, p. 12-8
  19. Desaulles E, Schwartz J (1979) "A comparative study of the action of frusemide and methyclothiazide on renin release by rat kidney slices and the interaction with indomethacin." Br J Pharmacol, 65, p. 193-6
  20. Muller FO, Schall R, Devaal AC, Groenewoud G, Hundt HKL, Middle MV (1995) "Influence of meloxicam on furosemide pharmacokinetics and pharmacodynamics in healthy volunteers." Eur J Clin Pharmacol, 48, p. 247-51
  21. Gurwitz JH, Everitt DE, Monane M, et al. (1996) "The impact of ibuprofen on the efficacy of antihypertensive treatment with hydrochlorothiazide in elderly persons." J Gerontol A Biol Sci Med Sci, 51, m74-9
  22. Heerdink ER, Leufkens HG, Herings RM, Ottervanger JP, Stricker BH, Bakker A (1998) "NSAIDs associated with increased risk of congestive heart failure in elderly patients taking diuretics." Arch Intern Med, 158, p. 1108-12
  23. Leary WP, Reyes AJ (1984) "Drug interactions with diuretics." S Afr Med J, 65, p. 455-61
  24. Bennett WM (1997) "Drug interactions and consequences of sodium restriction." Am J Clin Nutr, 65, S678-81
  25. Marcy TR, Ripley TL (2006) "Aldosterone antagonists in the treatment of heart failure." Am J Health Syst Pharm, 63, p. 49-58
  26. Perazella MA (2000) "Drug-induced hyperkalemia: old culprits and new offenders." Am J Med, 109, p. 307-14
View all 26 references

Switch to consumer interaction data

Moderate

nadolol baclofen

Applies to: Corzide 40 / 5 (bendroflumethiazide / nadolol) and FBL Kit (baclofen / flurbiprofen / lidocaine topical)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

lidocaine baclofen

Applies to: FBL Kit (baclofen / flurbiprofen / lidocaine topical) and FBL Kit (baclofen / flurbiprofen / lidocaine topical)

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

bendroflumethiazide baclofen

Applies to: Corzide 40 / 5 (bendroflumethiazide / nadolol) and FBL Kit (baclofen / flurbiprofen / lidocaine topical)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Drug and food interactions

Moderate

nadolol food

Applies to: Corzide 40 / 5 (bendroflumethiazide / nadolol)

GENERALLY AVOID: Coadministration with green tea may significantly decrease the plasma concentrations of nadolol. The mechanism of interaction has not been established, but may involve inhibition of OATP1A2-mediated uptake of nadolol in the intestine by catechins in green tea. In a study with ten healthy volunteers, administration of a single 30 mg oral dose of nadolol following repeated consumption of green tea (700 mL/day for 14 days) resulted in decreases of 85% in nadolol peak plasma concentration (Cmax) and systemic exposure (AUC) compared to administration with water. The renal clearance of nadolol was not altered. Green tea also markedly reduced the effects of nadolol on systolic blood pressure.

MANAGEMENT: Based on available data, patients should be advised to limit their consumption of green tea and green tea extracts during treatment with nadolol.

References

  1. Misaka S, Yatabe J, Muller F, et al. (2014) "Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects." Clin Pharmacol Ther, 95, p. 432-8
  2. Roth M, Timmermann BN, Hagenbuch B (2011) "Interactions of green tea catechins with organic anion-transporting polypeptides." Drug Metab Dispos, 39, p. 920-6

Switch to consumer interaction data

Moderate

lidocaine food

Applies to: FBL Kit (baclofen / flurbiprofen / lidocaine topical)

MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.

MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.

MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.

References

  1. Huet PM, LeLorier J (1980) "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther, 28, p. 208-15
  2. (2024) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc.
  3. (2015) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation
  4. (2022) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd
  5. (2022) "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd
  6. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/
  7. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/
View all 7 references

Switch to consumer interaction data

Moderate

baclofen food

Applies to: FBL Kit (baclofen / flurbiprofen / lidocaine topical)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

nadolol food

Applies to: Corzide 40 / 5 (bendroflumethiazide / nadolol)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

flurbiprofen food

Applies to: FBL Kit (baclofen / flurbiprofen / lidocaine topical)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn

Switch to consumer interaction data

Moderate

bendroflumethiazide food

Applies to: Corzide 40 / 5 (bendroflumethiazide / nadolol)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

nadolol food

Applies to: Corzide 40 / 5 (bendroflumethiazide / nadolol)

ADJUST DOSING INTERVAL: Concurrent administration with calcium salts may decrease the oral bioavailability of atenolol and possibly other beta-blockers. The exact mechanism of interaction is unknown. In six healthy subjects, calcium 500 mg (as lactate, carbonate, and gluconate) reduced the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of atenolol (100 mg) by 51% and 32%, respectively. The elimination half-life increased by 44%. Twelve hours after the combination, beta-blocking activity (as indicated by inhibition of exercise tachycardia) was reduced compared to that with atenolol alone. However, during a 4-week treatment in six hypertensive patients, there was no difference in blood pressure values between treatments. The investigators suggest that prolongation of the elimination half-life induced by calcium coadministration may have led to atenolol cumulation during long-term dosing, which compensated for the reduced bioavailability.

MANAGEMENT: It may help to separate the administration times of beta-blockers and calcium products by at least 2 hours. Patients should be monitored for potentially diminished beta-blocking effects following the addition of calcium therapy.

References

  1. Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E (1981) "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther, 30, p. 429-35

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.