Skip to main content

Drug Interactions between Complete Acid Reducer plus Antacid and digoxin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

digoxin calcium carbonate

Applies to: digoxin and Complete Acid Reducer plus Antacid (calcium carbonate / famotidine / magnesium hydroxide)

MONITOR: Excessive administration of calcium can aggravate digitalis toxicity and precipitate serious cardiac arrhythmias in digitalised patients. The mechanism probably involves additive or synergistic inotropic effects of calcium and digitalis glycosides on the myocardium.

MANAGEMENT: Caution is advised if calcium preparations are used in patients receiving digitalis glycosides. Patients should be advised not to exceed the calcium dosage prescribed for them and to consult their healthcare provider before consuming additional products that may contain substantial amounts of calcium (e.g., over-the-counter supplements).

References

  1. (2001) "Product Information. PhosLo (calcium acetate)." Braintree

Switch to consumer interaction data

Minor

famotidine calcium carbonate

Applies to: Complete Acid Reducer plus Antacid (calcium carbonate / famotidine / magnesium hydroxide) and Complete Acid Reducer plus Antacid (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References

  1. Donn KH, Eshelman FN, Plachetka JR, et al. (1984) "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy, 4, p. 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. (1984) "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol, 26, p. 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J (1987) "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol, 24, p. 551-3
  4. Bodemar G, Norlander B, Walan A (1979) "Diminished absorption of cimetidine caused by antacids." Lancet, 02/24/79, p. 444-5
  5. Steinberg WM, Lewis JH, Katz DM (1982) "Antacids inhibit absorption of cimetidine." N Engl J Med, 307, p. 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E (1989) "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol, 29, p. 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. (1984) "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci, 29, p. 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J (1986) "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm, 20, p. 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P (1987) "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol, 32, p. 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA (1982) "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J, 285, p. 998-9
  11. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L (1994) "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol, 29, p. 14-9
View all 12 references

Switch to consumer interaction data

Minor

famotidine magnesium hydroxide

Applies to: Complete Acid Reducer plus Antacid (calcium carbonate / famotidine / magnesium hydroxide) and Complete Acid Reducer plus Antacid (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References

  1. Donn KH, Eshelman FN, Plachetka JR, et al. (1984) "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy, 4, p. 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. (1984) "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol, 26, p. 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J (1987) "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol, 24, p. 551-3
  4. Bodemar G, Norlander B, Walan A (1979) "Diminished absorption of cimetidine caused by antacids." Lancet, 02/24/79, p. 444-5
  5. Steinberg WM, Lewis JH, Katz DM (1982) "Antacids inhibit absorption of cimetidine." N Engl J Med, 307, p. 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E (1989) "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol, 29, p. 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. (1984) "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci, 29, p. 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J (1986) "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm, 20, p. 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P (1987) "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol, 32, p. 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA (1982) "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J, 285, p. 998-9
  11. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L (1994) "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol, 29, p. 14-9
View all 12 references

Switch to consumer interaction data

Minor

digoxin magnesium hydroxide

Applies to: digoxin and Complete Acid Reducer plus Antacid (calcium carbonate / famotidine / magnesium hydroxide)

Concurrent administration of antacids may decrease the oral bioavailability of digoxin and digitoxin. The mechanism of interaction is unknown. In ten healthy volunteers, administration of a single 0.75 mg dose of digoxin with 60 mL of antacid containing either 4% aluminum hydroxide gel, 8% magnesium hydroxide gel, or 8% magnesium trisilicate resulted in significantly reduced urinary excretion of digoxin (expressed as the percentage of original dose recovered) compared to administration without antacid. Specifically, the cumulative six-day urinary digoxin excretion was 40.1% for control, 30.7% for aluminum hydroxide, 27.1% for magnesium hydroxide, and 29.1% for magnesium trisilicate. In an in vitro study involving absorption across a physiological membrane, cumulative absorption of digoxin 0.25 mg was reduced 11.4% by aluminum hydroxide gel, 15.3% by light magnesium carbonate, and 99.5% by magnesium trisilicate. In a case report, an approximately 50% reduction in digoxin systemic exposure (AUC) was observed when digoxin was administered with 30 mL of an aluminum-magnesium hydroxide antacid and mexiletine. The interaction was attributed to the antacid, as mexiletine is not known to interact with digoxin. Some data also support a potential interaction with digitoxin. However, other studies have found no evidence of a significant interaction between digoxin and various antacids. Based on existing evidence, no special precautions appear necessary, although patients may consider separating the times of administration by 1 to 2 hours if an interaction is suspected.

References

  1. D'Arcy PF, McElnay JC (1987) "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm, 21, p. 607-17
  2. Brown DD, Juhl RP (1976) "Decreased bioavailability of digoxin due to antacids and kaolin-pectin." N Engl J Med, 295, p. 1034-7
  3. Rodin SM, Johnson BF (1988) "Pharmacokinetic interactions with digoxin." Clin Pharmacokinet, 15, p. 227-44
  4. Bonelli J, Hruby K, Magometschnigg D, Hitzenberger G, Kaik G (1977) "The bio-availability of beta-acetyldigoxine alone and combined with aluminum hydroxide and magnesium hydroxide (Alucol)." Int J Clin Pharmacol Biopharm, 15, p. 337-9
  5. Allen MD, Greenblatt DJ, Harmatz JS, Smith TW (1981) "Effect of magnesium--aluminum hydroxide and kaolin--pectin on absorption of digoxin from tablets and capsules." J Clin Pharmacol, 21, p. 26-30
  6. Marcus FI (1985) "Pharmacokinetic interactions between digoxin and other drugs." J Am Coll Cardiol, 5, a82-90
  7. McElnay JC, Harron DW, D'Arcy PF, Eagle MR (1978) "Interaction of digoxin with antacid constituents." Br Med J, 1, p. 1554
  8. Saris SD, Lowenthal DT, Affrime MB (1983) "Steady-state digoxin concentration during oral mexiletine administration." Curr Ther Res Clin Exp, 34, p. 662-6
  9. (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
View all 9 references

Switch to consumer interaction data

Drug and food interactions

Moderate

calcium carbonate food

Applies to: Complete Acid Reducer plus Antacid (calcium carbonate / famotidine / magnesium hydroxide)

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  5. Mangels AR (2014) "Bone nutrients for vegetarians." Am J Clin Nutr, 100, epub
  6. Davies NT (1979) "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc, 38, p. 121-8
View all 6 references

Switch to consumer interaction data

Minor

digoxin food

Applies to: digoxin

Administration of digoxin with a high-fiber meal has been shown to decrease its bioavailability by almost 20%. Fiber can sequester up to 45% of the drug when given orally. Patients should be advised to maintain a regular diet without significant fluctuation in fiber intake while digoxin is being titrated.

Grapefruit juice may modestly increase the plasma concentrations of digoxin. The mechanism is increased absorption of digoxin due to mild inhibition of intestinal P-glycoprotein by certain compounds present in grapefruits. In 12 healthy volunteers, administration of grapefruit juice with and 30 minutes before, as well as 3.5, 7.5, and 11.5 hours after a single digoxin dose (0.5 mg) increased the mean area under the plasma concentration-time curve (AUC) of digoxin by just 9% compared to administration with water. Moreover, P-glycoprotein genetic polymorphism does not appear to influence the magnitude of the effects of grapefruit juice on digoxin. Thus, the interaction is unlikely to be of clinical significance.

References

  1. Darcy PF (1995) "Nutrient-drug interactions." Adverse Drug React Toxicol Rev, 14, p. 233-54
  2. Becquemont L, Verstuyft C, Kerb R, et al. (2001) "Effect of grapefruit juice on digoxin pharmacokinetics in humans." Clin Pharmacol Ther, 70, p. 311-6

Switch to consumer interaction data

Minor

famotidine food

Applies to: Complete Acid Reducer plus Antacid (calcium carbonate / famotidine / magnesium hydroxide)

H2 antagonists may reduce the clearance of nicotine. Cimetidine, 600 mg given twice a day for two days, reduced clearance of an intravenous nicotine dose by 30%. Ranitidine, 300 mg given twice a day for two days, reduced clearance by 10%. The clinical significance of this interaction is not known. Patients should be monitored for increased nicotine effects when using the patches or gum for smoking cessation and dosage adjustments should be made as appropriate.

References

  1. Bendayan R, Sullivan JT, Shaw C, Frecker RC, Sellers EM (1990) "Effect of cimetidine and ranitidine on the hepatic and renal elimination of nicotine in humans." Eur J Clin Pharmacol, 38, p. 165-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.