Skip to main content

Drug Interactions between colchicine and Korlym

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

colchicine miFEPRIStone

Applies to: colchicine and Korlym (mifepristone)

CONTRAINDICATED: Coadministration with mifepristone may significantly increase the plasma concentrations of drugs that are primarily metabolized by the CYP450 3A4 isoenzyme. The mechanism is decreased clearance due to inhibition of CYP450 3A4 activity by mifepristone. When a single 80 mg dose of simvastatin, a sensitive CYP450 3A4 substrate, was administered following pretreatment with mifepristone 1200 mg once daily for 10 days, simvastatin peak plasma concentration (Cmax) and systemic exposure (AUC) increased by approximately 7- and 10-fold, respectively. Likewise, the Cmax and AUC of simvastatin acid, the pharmacologically active metabolite, increased by approximately 18- and 16-fold, respectively.

MANAGEMENT: When mifepristone is used daily to control hyperglycemia secondary to hypercortisolism in patients with endogenous Cushing's syndrome, concomitant use of CYP450 3A4 substrates with narrow therapeutic ranges and high first-pass effect is considered contraindicated. These drugs include lovastatin, simvastatin, cyclosporine, ergot derivatives, fentanyl, oral midazolam, triazolam, pimozide, quinidine, sildenafil, sirolimus, and tacrolimus. The contraindication does not apply when mifepristone is used on a limited basis to terminate a pregnancy, but caution and close monitoring are advisable. Because mifepristone is eliminated slowly from the body, drug interactions may be observed for a prolonged period following discontinuation (approximately 2 to 3 weeks if mifepristone had been administered chronically to steady state).

References

  1. (2001) "Product Information. Mifeprex (mifepristone)." Danco Laboratories
  2. He K, Woolf TF, Hollenberg PF (1999) "Mechanism-based inactivation of cytochrome P-450-3A4 by mifepristone (RU486)." J Pharmacol Exp Ther, 288, p. 791-7
  3. (2012) "Product Information. Korlym (mifepristone)." Corcept Therapeutics Incorporated

Switch to consumer interaction data

Drug and food interactions

Major

colchicine food

Applies to: colchicine

GENERALLY AVOID: Coadministration with grapefruit juice may increase the serum concentrations of colchicine. Clinical toxicity including myopathy, neuropathy, multiorgan failure, and pancytopenia may occur. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism and P-glycoprotein efflux in the gut wall by certain compounds present in grapefruits. A published case report describes an eight-year-old patient with familial Mediterranean fever who developed acute clinical colchicine intoxication after ingesting approximately one liter of grapefruit juice per day for two months prior to hospital admission while being treated with colchicine 2 mg/day. Her condition progressed to circulatory shock and multiorgan failure, but she recovered with supportive therapy after 24 days in the hospital. In a study of 21 healthy volunteers, administration of 240 mL grapefruit juice twice a day for 4 days was found to have no significant effect on the pharmacokinetics of a single 0.6 mg dose of colchicine. However, significant interactions have been reported with other CYP450 3A4 inhibitors such as clarithromycin, diltiazem, erythromycin, ketoconazole, ritonavir, and verapamil.

MANAGEMENT: Patients treated with colchicine should be advised to avoid the consumption of grapefruit and grapefruit juice, and to contact their physician if they experience symptoms of colchicine toxicity such as abdominal pain, nausea, vomiting, diarrhea, fatigue, myalgia, asthenia, hyporeflexia, paresthesia, and numbness.

References

  1. Pettinger WA (1975) "Clonidine, a new antihypertensive drug." N Engl J Med, 293, p. 1179-80
  2. Caraco Y, Putterman C, Rahamimov R, Ben-Chetrit E (1992) "Acute colchicine intoxication: possible role of erythromycin administration." J Rheumatol, 19, p. 494-6
  3. Schiff D, Drislane FW (1992) "Rapid-onset colchicine myoneuropathy." Arthritis Rheum, 35, p. 1535-6
  4. Putterman C, Ben-Chetrit E, Caraco Y, Levy M (1991) "Colchicine intoxication: clinical pharmacology, risk factors, features, and management." Semin Arthritis Rheum, 21, p. 143-55
  5. Boomershine KH (2002) "Colchicine-induced rhabdomyolysis." Ann Pharmacother, 36, p. 824-6
  6. (2003) "Severe colchicine-macrolide interactions." Prescrire Int, 12, p. 18-9
  7. Tateishi T, Soucek P, Caraco Y, Guengerich FP, Wood AJ (1996) "Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation." Biochem Pharmacol, 53, p. 111-6
  8. Dogukan A, Oymak FS, Taskapan H, Guven M, Tokgoz B, Utas C (2001) "Acute fatal colchicine intoxication in a patient on continuous ambulatory peritoneal dialysis (CAPD). Possible role of clarithromycin administration." Clin Nephrol, 55, p. 181-2
  9. Rollot F, Pajot O, Chauvelot-Moachon L, Nazal EM, Kelaidi C, Blanche P (2004) "Acute colchicine intoxication during clarithromycin administration." Ann Pharmacother, 38, p. 2074-7
  10. Wilbur K, Makowsky M (2004) "Colchicine myotoxicity: case reports and literature review." Pharmacotherapy, 24, p. 1784-92
  11. Hung IF, Wu AK, Cheng VC, et al. (2005) "Fatal interaction between clarithromycin and colchicine in patients with renal insufficiency: a retrospective study." Clin Infect Dis, 41, p. 291-300
  12. Cheng VC, Ho PL, Yuen KY (2005) "Two probable cases of serious drug interaction between clarithromycin and colchicine." South Med J, 98, p. 811-3
  13. Akdag I, Ersoy A, Kahvecioglu S, Gullulu M, Dilek K (2006) "Acute colchicine intoxication during clarithromycin administration in patients with chronic renal failure." J Nephrol, 19, p. 515-7
  14. van der Velden W, Huussen J, Ter Laak H, de Sevaux R (2008) "Colchicine-induced neuromyopathy in a patient with chronic renal failure: the role of clarithromycin." Neth J Med, 66, p. 204-6
  15. Goldbart A, Press J, Sofer S, Kapelushnik J (2000) "Near fatal acute colchicine intoxication in a child. A case report." Eur J Pediatr, 159, p. 895-7
  16. (2008) "Colchicine: serious interactions." Prescrire Int, 17, p. 151-3
  17. (2009) "Product Information. Colcrys (colchicine)." AR Scientific Inc
  18. Dahan A, Amidon GL (2009) "Grapefruit juice and its constitueants augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein." Pharm Res, 26, p. 883-92
  19. McKinnell J, Tayek JA (2009) "Short term treatment with clarithromycin resulting in colchicine-induced rhabdomyolysis." J Clin Rheumatol, 15, p. 303-5
View all 19 references

Switch to consumer interaction data

Moderate

miFEPRIStone food

Applies to: Korlym (mifepristone)

ADJUST DOSING INTERVAL: Food may significantly increase the plasma concentrations of mifepristone.

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of mifepristone. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: When mifepristone is used daily to control hyperglycemia secondary to hypercortisolism in patients with endogenous Cushing's syndrome, it should be taken with food to achieve consistent plasma drug levels. Patients should be advised to avoid consuming grapefruit or grapefruit juice during treatment with mifepristone, as it may cause increased adverse effects such as headache, dizziness, fatigue, nausea, vomiting, cramping, diarrhea, hypokalemia, adrenal insufficiency, vaginal bleeding, arthralgia, peripheral edema, and hypertension. Because mifepristone is eliminated slowly from the body, the interaction with grapefruit juice may be observed for a prolonged period.

References

  1. (2001) "Product Information. Mifeprex (mifepristone)." Danco Laboratories
  2. (2012) "Product Information. Korlym (mifepristone)." Corcept Therapeutics Incorporated

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.